The Case for Asymmetric Systolic Array Floorplanning

09/06/2023
by   C. Peltekis, et al.
0

The widespread proliferation of deep learning applications has triggered the need to accelerate them directly in hardware. General Matrix Multiplication (GEMM) kernels are elemental deep-learning constructs and they inherently map onto Systolic Arrays (SAs). SAs are regular structures that are well-suited for accelerating matrix multiplications. Typical SAs use a pipelined array of Processing Elements (PEs), which communicate with local connections and pre-orchestrated data movements. In this work, we show that the physical layout of SAs should be asymmetric to minimize wirelength and improve energy efficiency. The floorplan of the SA adjusts better to the asymmetric widths of the horizontal and vertical data buses and their switching activity profiles. It is demonstrated that such physically asymmetric SAs reduce interconnect power by 9.1 (CNN) layers, as compared to SAs of the same size but with a square (i.e., symmetric) layout. The savings in interconnect power translate, in turn, to 2.1

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset