Sub-Structural Niching in Non-Stationary Environments

02/04/2005
by   K. Sastry, et al.
0

Niching enables a genetic algorithm (GA) to maintain diversity in a population. It is particularly useful when the problem has multiple optima where the aim is to find all or as many as possible of these optima. When the fitness landscape of a problem changes overtime, the problem is called non--stationary, dynamic or time--variant problem. In these problems, niching can maintain useful solutions to respond quickly, reliably and accurately to a change in the environment. In this paper, we present a niching method that works on the problem substructures rather than the whole solution, therefore it has less space complexity than previously known niching mechanisms. We show that the method is responding accurately when environmental changes occur.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset