Stance Detection With Supervised, Zero-Shot, and Few-Shot Applications

05/02/2023
by   Michael Burnham, et al.
0

Stance detection is the identification of an author's beliefs about a subject from a document. Researchers widely rely on sentiment analysis to accomplish this. However, recent research has show that sentiment analysis is only loosely correlated with stance, if at all. This paper advances methods in text analysis by precisely defining the task of stance detection, providing a generalized framework for the task, and then presenting three distinct approaches for performing stance detection: supervised classification, zero-shot classification with NLI classifiers, and in-context learning. In doing so, I demonstrate how zero-shot and few-shot language classifiers can replace human labelers for a variety of tasks and discuss how their application and limitations differ from supervised classifiers. Finally, I demonstrate an application of zero-shot stance detection by replicating Block Jr et al. (2022).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro