Safe Learning-based Gradient-free Model Predictive Control Based on Cross-entropy Method

02/24/2021
by   Lei Zheng, et al.
0

In this paper, a safe and learning-based control framework for model predictive control (MPC) is proposed to optimize nonlinear systems with a gradient-free objective function under uncertain environmental disturbances. The control framework integrates a learning-based MPC with an auxiliary controller in a way of minimal intervention. The learning-based MPC augments the prior nominal model with incremental Gaussian Processes to learn the uncertain disturbances. The cross-entropy method (CEM) is utilized as the sampling-based optimizer for the MPC with a gradient-free objective function. A minimal intervention controller is devised with a control Lyapunov function and a control barrier function to guide the sampling process and endow the system with high probabilistic safety. The proposed algorithm shows a safe and adaptive control performance on a simulated quadrotor in the tasks of trajectory tracking and obstacle avoidance under uncertain wind disturbances.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset