RGB-Multispectral Matching: Dataset, Learning Methodology, Evaluation

06/14/2022
by   Fabio Tosi, et al.
0

We address the problem of registering synchronized color (RGB) and multi-spectral (MS) images featuring very different resolution by solving stereo matching correspondences. Purposely, we introduce a novel RGB-MS dataset framing 13 different scenes in indoor environments and providing a total of 34 image pairs annotated with semi-dense, high-resolution ground-truth labels in the form of disparity maps. To tackle the task, we propose a deep learning architecture trained in a self-supervised manner by exploiting a further RGB camera, required only during training data acquisition. In this setup, we can conveniently learn cross-modal matching in the absence of ground-truth labels by distilling knowledge from an easier RGB-RGB matching task based on a collection of about 11K unlabeled image triplets. Experiments show that the proposed pipeline sets a good performance bar (1.16 pixels average registration error) for future research on this novel, challenging task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset