NM-Net: Mining Reliable Neighbors for Robust Feature Correspondences

03/31/2019
by   Chen Zhao, et al.
0

Feature correspondence selection is pivotal to many feature-matching based tasks in computer vision. Searching for spatially k-nearest neighbors is a common strategy for extracting local information in many previous works. However, there is no guarantee that the spatially k-nearest neighbors of correspondences are consistent because the spatial distribution of false correspondences is often irregular. To address this issue, we present a compatibility-specific mining method to search for consistent neighbors. Moreover, in order to extract and aggregate more reliable features from neighbors, we propose a hierarchical network named NM-Net with a series of convolution layers taking the generated graph as input, which is insensitive to the order of correspondences. Our experimental results have shown the proposed method achieves the state-of-the-art performance on four datasets with various inlier ratios and varying numbers of feature consistencies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset