Multi-View Time Series Classification via Global-Local Correlative Channel-Aware Fusion Mechanism

11/24/2019
by   Yue Bai, et al.
0

Multi-view time series classification aims to fuse the distinctive temporal information from different views to further enhance the classification performance. Existing methods mainly focus on fusing multi-view features at an early stage (e.g., learning a common representation shared by multiple views). However, these early fusion methods may not fully exploit the view-specific distinctive patterns in high-dimension time series data. Moreover, the intra-view and inter-view label correlations, which are critical for multi-view classification, are usually ignored in previous works. In this paper, we propose a Global-Local Correlative Channel-AwareFusion (GLCCF) model to address the aforementioned issues. Particularly, our model extracts global and local temporal patterns by a two-stream structure encoder, captures the intra-view and inter-view label correlations by constructing a graph based correlation matrix, and extracts the cross-view global patterns via a learnable channel-aware late fusion mechanism, which could be effectively implemented with a convolutional neural network. Extensive experiments on two real-world datasets demonstrate the superiority of our approach over the state-of-the-art methods. An ablation study is furtherprovided to show the effectiveness of each model component.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset