Modeling indoor-level non-pharmaceutical interventions during the COVID-19 pandemic: a pedestrian dynamics-based microscopic simulation approach
Mathematical modeling of epidemic spreading has been widely adopted to estimate the threats of epidemic diseases (i.e., the COVID-19 pandemic) as well as to evaluate epidemic control interventions. The indoor place is considered to be a significant epidemic spreading risk origin, but existing widely-used epidemic spreading models are usually limited for indoor places since the dynamic physical distance changes between people are ignored, and the empirical features of the essential and non-essential travel are not differentiated. In this paper, we introduce a pedestrian-based epidemic spreading model that is capable of modeling indoor transmission risks of diseases during people's social activities. Taking advantage of the before-and-after mobility data from the University of Maryland COVID-19 Impact Analysis Platform, it's found that people tend to spend more time in grocery stores once their travel frequencies are restricted to a low level. In other words, an increase in dwell time could balance the decrease in travel frequencies and satisfy people's demand. Based on the pedestrian-based model and the empirical evidence, combined non-pharmaceutical interventions from different operational levels are evaluated. Numerical simulations show that restrictions on people's travel frequency and open-hours of indoor places may not be universally effective in reducing average infection risks for each pedestrian who visit the place. Entry limitations can be a widely effective alternative, whereas the decision-maker needs to balance the decrease in risky contacts and the increase in queue length outside the place that may impede people from fulfilling their travel needs.
READ FULL TEXT