MedLocker: A Transferable Adversarial Watermarking for Preventing Unauthorized Analysis of Medical Image Dataset
The collection of medical image datasets is a demanding and laborious process that requires significant resources. Furthermore, these medical datasets may contain personally identifiable information, necessitating measures to ensure that unauthorized access is prevented. Failure to do so could violate the intellectual property rights of the dataset owner and potentially compromise the privacy of patients. As a result, safeguarding medical datasets and preventing unauthorized usage by AI diagnostic models is a pressing challenge. To address this challenge, we propose a novel visible adversarial watermarking method for medical image copyright protection, called MedLocker. Our approach involves continuously optimizing the position and transparency of a watermark logo, which reduces the performance of the target model, leading to incorrect predictions. Importantly, we ensure that our method minimizes the impact on clinical visualization by constraining watermark positions using semantical masks (WSM), which are bounding boxes of lesion regions based on semantic segmentation. To ensure the transferability of the watermark across different models, we verify the cross-model transferability of the watermark generated on a single model. Additionally, we generate a unique watermark parameter list each time, which can be used as a certification to verify the authorization. We evaluate the performance of MedLocker on various mainstream backbones and validate the feasibility of adversarial watermarking for copyright protection on two widely-used diabetic retinopathy detection datasets. Our results demonstrate that MedLocker can effectively protect the copyright of medical datasets and prevent unauthorized users from analyzing medical images with AI diagnostic models.
READ FULL TEXT