Looking at Hands in Autonomous Vehicles: A ConvNet Approach using Part Affinity Fields

04/03/2018
by   Kevan Yuen, et al.
2

In the context of autonomous driving, where humans may need to take over in the event where the computer may issue a takeover request, a key step towards driving safety is the monitoring of the hands to ensure the driver is ready for such a request. This work, focuses on the first step of this process, which is to locate the hands. Such a system must work in real-time and under varying harsh lighting conditions. This paper introduces a fast ConvNet approach, based on the work of original work of OpenPose for full body joint estimation. The network is modified with fewer parameters and retrained using our own day-time naturalistic autonomous driving dataset to estimate joint and affinity heatmaps for driver & passenger's wrist and elbows, for a total of 8 joint classes and part affinity fields between each wrist-elbow pair. The approach runs real-time on real-world data at 40 fps on multiple drivers and passengers. The system is extensively evaluated both quantitatively and qualitatively, showing at least 95

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset