Learning Statistical Representation with Joint Deep Embedded Clustering
One of the most promising approaches for unsupervised learning is combining deep representation learning and deep clustering. Some recent works propose to simultaneously learn representation using deep neural networks and perform clustering by defining a clustering loss on top of embedded features. However, these approaches are sensitive to imbalanced data and out-of-distribution samples. Hence, these methods optimize clustering by pushing data close to randomly initialized cluster centers. This is problematic when the number of instances varies largely in different classes or a cluster with few samples has less chance to be assigned a good centroid. To overcome these limitations, we introduce StatDEC, a new unsupervised framework for joint statistical representation learning and clustering. StatDEC simultaneously trains two deep learning models, a deep statistics network that captures the data distribution, and a deep clustering network that learns embedded features and performs clustering by explicitly defining a clustering loss. Specifically, the clustering network and representation network both take advantage of our proposed statistics pooling layer that represents mean, variance, and cardinality to handle the out-of-distribution samples as well as a class imbalance. Our experiments show that using these representations, one can considerably improve results on imbalanced image clustering across a variety of image datasets. Moreover, the learned representations generalize well when transferred to the out-of-distribution dataset.
READ FULL TEXT