Language Adaptive Weight Generation for Multi-task Visual Grounding
Although the impressive performance in visual grounding, the prevailing approaches usually exploit the visual backbone in a passive way, i.e., the visual backbone extracts features with fixed weights without expression-related hints. The passive perception may lead to mismatches (e.g., redundant and missing), limiting further performance improvement. Ideally, the visual backbone should actively extract visual features since the expressions already provide the blueprint of desired visual features. The active perception can take expressions as priors to extract relevant visual features, which can effectively alleviate the mismatches. Inspired by this, we propose an active perception Visual Grounding framework based on Language Adaptive Weights, called VG-LAW. The visual backbone serves as an expression-specific feature extractor through dynamic weights generated for various expressions. Benefiting from the specific and relevant visual features extracted from the language-aware visual backbone, VG-LAW does not require additional modules for cross-modal interaction. Along with a neat multi-task head, VG-LAW can be competent in referring expression comprehension and segmentation jointly. Extensive experiments on four representative datasets, i.e., RefCOCO, RefCOCO+, RefCOCOg, and ReferItGame, validate the effectiveness of the proposed framework and demonstrate state-of-the-art performance.
READ FULL TEXT