K-sparse Pure State Tomography with Phase Estimation

11/08/2021
by   Burhan Gulbahar, et al.
0

Quantum state tomography (QST) for reconstructing pure states requires exponentially increasing resources and measurements with the number of qubits by using state-of-the-art quantum compressive sensing (CS) methods. In this article, QST reconstruction for any pure state composed of the superposition of K different computational basis states of n qubits in a specific measurement set-up, i.e., denoted as K-sparse, is achieved without any initial knowledge and with quantum polynomial-time complexity of resources based on the assumption of the existence of polynomial size quantum circuits for implementing exponentially large powers of a specially designed unitary operator. The algorithm includes 𝒪(2 / | c_k|^2) repetitions of conventional phase estimation algorithm depending on the probability | c_k|^2 of the least possible basis state in the superposition and 𝒪(d K (log K)^c) measurement settings with conventional quantum CS algorithms independent from the number of qubits while dependent on K for constant c and d. Quantum phase estimation algorithm is exploited based on the favorable eigenstructure of the designed operator to represent any pure state as a superposition of eigenvectors. Linear optical set-up is presented for realizing the special unitary operator which includes beam splitters and phase shifters where propagation paths of single photon are tracked with which-path-detectors. Quantum circuit implementation is provided by using only CNOT, phase shifter and - π / 2 rotation gates around X-axis in Bloch sphere, i.e., R_X(- π / 2), allowing to be realized in NISQ devices. Open problems are discussed regarding the existence of the unitary operator and its practical circuit implementation.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
10/25/2021

SWAP Test for an Arbitrary Number of Quantum States

We develop a recursive algorithm to generalize the quantum SWAP test for...
research
06/15/2023

Stable Tomography for Structured Quantum States

The reconstruction of quantum states from experimental measurements, oft...
research
09/17/2020

Fast and robust quantum state tomography from few basis measurements

Quantum state tomography is a powerful, but resource-intensive, general ...
research
09/29/2022

Low-Stabilizer-Complexity Quantum States Are Not Pseudorandom

We show that quantum states with "low stabilizer complexity" can be effi...
research
06/25/2019

(Pseudo) Random Quantum States with Binary Phase

We prove a quantum information-theoretic conjecture due to Ji, Liu and S...
research
07/29/2022

Fermionic tomography and learning

Shadow tomography via classical shadows is a state-of-the-art approach f...
research
06/01/2022

A technical note for a Shor's algorithm by phase estimation

The objective of this paper concerns at first the motivation and the met...

Please sign up or login with your details

Forgot password? Click here to reset