Granular-ball computing: an efficient, robust, and interpretable adaptive multi-granularity representation and computation method

04/21/2023
by   Shuyin Xia, et al.
0

Human cognition has a “large-scale first” cognitive mechanism, therefore possesses adaptive multi-granularity description capabilities. This results in computational characteristics such as efficiency, robustness, and interpretability. Although most existing artificial intelligence learning methods have certain multi-granularity features, they do not fully align with the “large-scale first” cognitive mechanism. Multi-granularity granular-ball computing is an important model method developed in recent years. This method can use granular-balls of different sizes to adaptively represent and cover the sample space, and perform learning based on granular-balls. Since the number of coarse-grained "granular-ball" is smaller than the number of sample points, granular-ball computing is more efficient; the coarse-grained characteristics of granular-balls are less likely to be affected by fine-grained sample points, making them more robust; the multi-granularity structure of granular-balls can produce topological structures and coarse-grained descriptions, providing natural interpretability. Granular-ball computing has now been effectively extended to various fields of artificial intelligence, developing theoretical methods such as granular-ball classifiers, granular-ball clustering methods, granular-ball neural networks, granular-ball rough sets, and granular-ball evolutionary computation, significantly improving the efficiency, noise robustness, and interpretability of existing methods. It has good innovation, practicality, and development potential. This article provides a systematic introduction to these methods and analyzes the main problems currently faced by granular-ball computing, discussing both the primary applicable scenarios for granular-ball computing and offering references and suggestions for future researchers to improve this theory.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset