Fully Dynamic Spectral Vertex Sparsifiers and Applications
We study dynamic algorithms for maintaining spectral vertex sparsifiers of graphs with respect to a set of terminals T of our choice. Such objects preserve pairwise resistances, solutions to systems of linear equations, and energy of electrical flows between the terminals in T. We give a data structure that supports insertions and deletions of edges, and terminal additions, all in sublinear time. Our result is then applied to the following problems. (1) A data structure for maintaining solutions to Laplacian systems Lx = b, where L is the Laplacian matrix and b is a demand vector. For a bounded degree, unweighted graph, we support modifications to both L and b while providing access to ϵ-approximations to the energy of routing an electrical flow with demand b, as well as query access to entries of a vector x̃ such that x̃-L^†b_L≤ϵL^†b_L in Õ(n^11/12ϵ^-5) expected amortized update and query time. (2) A data structure for maintaining All-Pairs Effective Resistance. For an intermixed sequence of edge insertions, deletions, and resistance queries, our data structure returns (1 ±ϵ)-approximation to all the resistance queries against an oblivious adversary with high probability. Its expected amortized update and query times are Õ((m^3/4,n^5/6ϵ^-2) ϵ^-4) on an unweighted graph, and Õ(n^5/6ϵ^-6) on weighted graphs. These results represent the first data structures for maintaining key primitives from the Laplacian paradigm for graph algorithms in sublinear time without assumptions on the underlying graph topologies.
READ FULL TEXT