From Two Graphs to N Questions: A VQA Dataset for Compositional Reasoning on Vision and Commonsense
Visual Question Answering (VQA) is a challenging task for evaluating the ability of comprehensive understanding of the world. Existing benchmarks usually focus on the reasoning abilities either only on the vision or mainly on the knowledge with relatively simple abilities on vision. However, the ability of answering a question that requires alternatively inferring on the image content and the commonsense knowledge is crucial for an advanced VQA system. In this paper, we introduce a VQA dataset that provides more challenging and general questions about Compositional Reasoning on vIsion and Commonsense, which is named as CRIC. To create this dataset, we develop a powerful method to automatically generate compositional questions and rich annotations from both the scene graph of a given image and some external knowledge graph. Moreover, this paper presents a new compositional model that is capable of implementing various types of reasoning functions on the image content and the knowledge graph. Further, we analyze several baselines, state-of-the-art and our model on CRIC dataset. The experimental results show that the proposed task is challenging, where state-of-the-art obtains 52.26 obtains 58.38
READ FULL TEXT