Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems

03/20/2020
by   Maxim Naumov, et al.
0

Large-scale training is important to ensure high performance and accuracy of machine-learning models. At Facebook we use many different models, including computer vision, video and language models. However, in this paper we focus on the deep learning recommendation models (DLRMs), which are responsible for more than 50 present unique challenges in training because they exercise not only compute but also memory capacity as well as memory and network bandwidth. As model size and complexity increase, efficiently scaling training becomes a challenge. To address it we design Zion – Facebook's next-generation large-memory training platform that consists of both CPUs and accelerators. Also, we discuss the design requirements of future scale-out training systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset