Classical-to-Quantum Transfer Learning for Spoken Command Recognition Based on Quantum Neural Networks

10/17/2021
by   Jun Qi, et al.
0

This work investigates an extension of transfer learning applied in machine learning algorithms to the emerging hybrid end-to-end quantum neural network (QNN) for spoken command recognition (SCR). Our QNN-based SCR system is composed of classical and quantum components: (1) the classical part mainly relies on a 1D convolutional neural network (CNN) to extract speech features; (2) the quantum part is built upon the variational quantum circuit with a few learnable parameters. Since it is inefficient to train the hybrid end-to-end QNN from scratch on a noisy intermediate-scale quantum (NISQ) device, we put forth a hybrid transfer learning algorithm that allows a pre-trained classical network to be transferred to the classical part of the hybrid QNN model. The pre-trained classical network is further modified and augmented through jointly fine-tuning with a variational quantum circuit (VQC). The hybrid transfer learning methodology is particularly attractive for the task of QNN-based SCR because low-dimensional classical features are expected to be encoded into quantum states. We assess the hybrid transfer learning algorithm applied to the hybrid classical-quantum QNN for SCR on the Google speech command dataset, and our classical simulation results suggest that the hybrid transfer learning can boost our baseline performance on the SCR task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset