Causal Fairness for Outcome Control
As society transitions towards an AI-based decision-making infrastructure, an ever-increasing number of decisions once under control of humans are now delegated to automated systems. Even though such developments make various parts of society more efficient, a large body of evidence suggests that a great deal of care needs to be taken to make such automated decision-making systems fair and equitable, namely, taking into account sensitive attributes such as gender, race, and religion. In this paper, we study a specific decision-making task called outcome control in which an automated system aims to optimize an outcome variable Y while being fair and equitable. The interest in such a setting ranges from interventions related to criminal justice and welfare, all the way to clinical decision-making and public health. In this paper, we first analyze through causal lenses the notion of benefit, which captures how much a specific individual would benefit from a positive decision, counterfactually speaking, when contrasted with an alternative, negative one. We introduce the notion of benefit fairness, which can be seen as the minimal fairness requirement in decision-making, and develop an algorithm for satisfying it. We then note that the benefit itself may be influenced by the protected attribute, and propose causal tools which can be used to analyze this. Finally, if some of the variations of the protected attribute in the benefit are considered as discriminatory, the notion of benefit fairness may need to be strengthened, which leads us to articulating a notion of causal benefit fairness. Using this notion, we develop a new optimization procedure capable of maximizing Y while ascertaining causal fairness in the decision process.
READ FULL TEXT