"Can't Take the Pressure?": Examining the Challenges of Blood Pressure Estimation via Pulse Wave Analysis

04/23/2023
by   Suril Mehta, et al.
0

The use of observed wearable sensor data (e.g., photoplethysmograms [PPG]) to infer health measures (e.g., glucose level or blood pressure) is a very active area of research. Such technology can have a significant impact on health screening, chronic disease management and remote monitoring. A common approach is to collect sensor data and corresponding labels from a clinical grade device (e.g., blood pressure cuff), and train deep learning models to map one to the other. Although well intentioned, this approach often ignores a principled analysis of whether the input sensor data has enough information to predict the desired metric. We analyze the task of predicting blood pressure from PPG pulse wave analysis. Our review of the prior work reveals that many papers fall prey data leakage, and unrealistic constraints on the task and the preprocessing steps. We propose a set of tools to help determine if the input signal in question (e.g., PPG) is indeed a good predictor of the desired label (e.g., blood pressure). Using our proposed tools, we have found that blood pressure prediction using PPG has a high multi-valued mapping factor of 33.2 mutual information of 9.8 well-established task, has a very low multi-valued mapping factor of 0.75 high mutual information of 87.7 realistic representation of the current progress towards to goal of wearable blood pressure measurement via PPG pulse wave analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset