Automating DBSCAN via Deep Reinforcement Learning

08/09/2022
by   Ruitong Zhang, et al.
26

DBSCAN is widely used in many scientific and engineering fields because of its simplicity and practicality. However, due to its high sensitivity parameters, the accuracy of the clustering result depends heavily on practical experience. In this paper, we first propose a novel Deep Reinforcement Learning guided automatic DBSCAN parameters search framework, namely DRL-DBSCAN. The framework models the process of adjusting the parameter search direction by perceiving the clustering environment as a Markov decision process, which aims to find the best clustering parameters without manual assistance. DRL-DBSCAN learns the optimal clustering parameter search policy for different feature distributions via interacting with the clusters, using a weakly-supervised reward training policy network. In addition, we also present a recursive search mechanism driven by the scale of the data to efficiently and controllably process large parameter spaces. Extensive experiments are conducted on five artificial and real-world datasets based on the proposed four working modes. The results of offline and online tasks show that the DRL-DBSCAN not only consistently improves DBSCAN clustering accuracy by up to 26 respectively, but also can stably find the dominant parameters with high computational efficiency. The code is available at https://github.com/RingBDStack/DRL-DBSCAN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset