A Joint Framework to Privacy-Preserving Edge Intelligence in Vehicular Networks
The number of internet-connected devices has been exponentially growing with the massive volume of heterogeneous data generated from various devices, resulting in a highly intertwined cyber-physical system. Currently, the Edge Intelligence System (EIS) concept that leverages the merits of edge computing and Artificial Intelligence (AI) is utilized to provide smart cloud services with powerful computational processing and reduce decision-making delays. Thus, EIS offers a possible solution to realizing future Intelligent Transportation Systems (ITS), especially in a vehicular network framework. However, since the central aggregator server supervises the entire system orchestration, the existing EIS framework faces several challenges and is still potentially susceptible to numerous malicious attacks. Hence, to solve the issues mentioned earlier, this paper presents the notion of secure edge intelligence, merging the benefits of Federated Learning (FL), blockchain, and Local Differential Privacy (LDP). The blockchain-assisted FL approach efficiently improves traffic prediction accuracy and enhances user privacy and security by recording transactions in immutable distributed ledger networks and providing a decentralized reward mechanism system. Furthermore, LDP is empowered to strengthen the confidentiality of data sharing transactions, especially in protecting users' private data from various attacks. The proposed framework has been implemented in two scenarios, i.e., blockchain-based FL to efficiently develop the decentralized traffic management for vehicular networks and LDP-based FL to produce randomized privacy protection using the IBM Library for differential privacy.
READ FULL TEXT