A hybrid approach of interpolations and CNN to obtain super-resolution
We propose a novel architecture that learns an end-to-end mapping function to improve the spatial resolution of the input natural images. The model is unique in forming a nonlinear combination of three traditional interpolation techniques using the convolutional neural network. Another proposed architecture uses a skip connection with nearest neighbor interpolation, achieving almost similar results. The architectures have been carefully designed to ensure that the reconstructed images lie precisely in the manifold of high-resolution images, thereby preserving the high-frequency components with fine details. We have compared with the state of the art and recent deep learning based natural image super-resolution techniques and found that our methods are able to preserve the sharp details in the image, while also obtaining comparable or better PSNR than them. Since our methods use only traditional interpolations and a shallow CNN with less number of smaller filters, the computational cost is kept low. We have reported the results of two proposed architectures on five standard datasets, for an upscale factor of 2. Our methods generalize well in most cases, which is evident from the better results obtained with increasingly complex datasets. For 4-times upscaling, we have designed similar architectures for comparing with other methods.
READ FULL TEXT