A Flexible Convolutional Solver with Application to Photorealistic Style Transfer
We propose a new flexible deep convolutional neural network (convnet) to perform fast visual style transfer. In contrast to existing convnets that address the same task, our architecture derives directly from the structure of the gradient descent originally used to solve the style transfer problem [Gatys et al., 2016]. Like existing convnets, ours approximately solves the original problem much faster than the gradient descent. However, our network is uniquely flexible by design: it can be manipulated at runtime to enforce new constraints on the final solution. In particular, we show how to modify it to obtain a photorealistic result with no retraining. We study the modifications made by [Luan et al., 2017] to the original cost function of [Gatys et al., 2016] to achieve photorealistic style transfer. These modifications affect directly the gradient descent and can be reported on-the-fly in our network. These modifications are possible as the proposed architecture stems from unrolling the gradient descent.
READ FULL TEXT