1D Convolutional Neural Network Models for Sleep Arousal Detection
Sleep arousals transition the depth of sleep to a more superficial stage. The occurrence of such events is often considered as a protective mechanism to alert the body of harmful stimuli. Thus, accurate sleep arousal detection can lead to an enhanced understanding of the underlying causes and influencing the assessment of sleep quality. Previous studies and guidelines have suggested that sleep arousals are linked mainly to abrupt frequency shifts in EEG signals, but the proposed rules are shown to be insufficient for a comprehensive characterization of arousals. This study investigates the application of five recent convolutional neural networks (CNNs) for sleep arousal detection and performs comparative evaluations to determine the best model for this task. The investigated state-of-the-art CNN models have originally been designed for image or speech processing. A detailed set of evaluations is performed on the benchmark dataset provided by PhysioNet/Computing in Cardiology Challenge 2018, and the results show that the best 1D CNN model has achieved an average of 0.31 and 0.84 for the area under the precision-recall and area under the ROC curves, respectively.
READ FULL TEXT