Ziyu Wang

is this you? claim profile

0

Research Scientist at Deepmind

  • Bayesian Optimization in AlphaGo

    During the development of AlphaGo, its many hyper-parameters were tuned with Bayesian optimization multiple times. This automatic tuning process resulted in substantial improvements in playing strength. For example, prior to the match with Lee Sedol, we tuned the latest AlphaGo agent and this improved its win-rate from 50 in the final match. Of course, since we tuned AlphaGo many times during its development cycle, the compounded contribution was even higher than this percentage. It is our hope that this brief case study will be of interest to Go fans, and also provide Bayesian optimization practitioners with some insights and inspiration.

    12/17/2018 ∙ by Yutian Chen, et al. ∙ 128 share

    read it

  • Function Space Particle Optimization for Bayesian Neural Networks

    While Bayesian neural networks (BNNs) have drawn increasing attention, their posterior inference remains challenging, due to the high-dimensional and over-parameterized nature. To address this issue, several highly flexible and scalable variational inference procedures based on the idea of particle optimization have been proposed. These methods directly optimize a set of particles to approximate the target posterior. However, their application to BNNs often yields sub-optimal performance, as such methods have a particular failure mode on over-parameterized models. In this paper, we propose to solve this issue by performing particle optimization directly in the space of regression functions. We demonstrate through extensive experiments that our method successfully overcomes this issue, and outperforms strong baselines in a variety of tasks including prediction, defense against adversarial examples, and reinforcement learning.

    02/26/2019 ∙ by Ziyu Wang, et al. ∙ 24 share

    read it

  • Deep Music Analogy Via Latent Representation Disentanglement

    Analogy is a key solution to automated music generation, featured by its ability to generate both natural and creative pieces based on only a few examples. In general, an analogy is made by partially transferring the music abstractions, i.e., high-level representations and their relationships, from one piece to another; however, this procedure requires disentangling music representations, which takes little effort for musicians but is non-trivial for computers. Three sub-problems arise: extracting latent representations from the observation, disentangling the representations so that each part has a unique semantic interpretation, and mapping the latent representations back to actual music. An explicitly-constrained conditional variational auto-encoder (EC2-VAE) is proposed as a unified solution to all three sub-problems. In this study, we focus on disentangling the pitch and rhythm representations of 8-beat music clips conditioned on chords. In producing music analogies, this model helps us to realize the imaginary situation of "what if" a piece is composed using a different pitch contour, rhythm pattern, chord progression etc., by borrowing the representations from other pieces. Finally, we validate the proposed disentanglement method using objective measurements and evaluate the analogy examples by a subjective study.

    06/09/2019 ∙ by Ruihan Yang, et al. ∙ 8 share

    read it

  • One-Shot High-Fidelity Imitation: Training Large-Scale Deep Nets with RL

    Humans are experts at high-fidelity imitation -- closely mimicking a demonstration, often in one attempt. Humans use this ability to quickly solve a task instance, and to bootstrap learning of new tasks. Achieving these abilities in autonomous agents is an open problem. In this paper, we introduce an off-policy RL algorithm (MetaMimic) to narrow this gap. MetaMimic can learn both (i) policies for high-fidelity one-shot imitation of diverse novel skills, and (ii) policies that enable the agent to solve tasks more efficiently than the demonstrators. MetaMimic relies on the principle of storing all experiences in a memory and replaying these to learn massive deep neural network policies by off-policy RL. This paper introduces, to the best of our knowledge, the largest existing neural networks for deep RL and shows that larger networks with normalization are needed to achieve one-shot high-fidelity imitation on a challenging manipulation task. The results also show that both types of policy can be learned from vision, in spite of the task rewards being sparse, and without access to demonstrator actions.

    10/11/2018 ∙ by Tom Le Paine, et al. ∙ 4 share

    read it

  • A Framework for Automated Pop-song Melody Generation with Piano Accompaniment Arrangement

    We contribute a pop-song automation framework for lead melody generation and accompaniment arrangement. The framework reflects the major procedures of human music composition, generating both lead melody and piano accompaniment by a unified strategy. Specifically, we take chord progression as an input and propose three models to generate a structured melody with piano accompaniment textures. First, the harmony alternation model transforms a raw input chord progression to an altered one to better fit the specified music style. Second, the melody generation model generates the lead melody and other voices (melody lines) of the accompaniment using seasonal ARMA (Autoregressive Moving Average) processes. Third, the melody integration model integrates melody lines (voices) together as the final piano accompaniment. We evaluate the proposed framework using subjective listening tests. Experimental results show that the generated melodies are rated significantly higher than the ones generated by bi-directional LSTM, and our accompaniment arrangement result is comparable with a state-of-the-art commercial software, Band in a Box.

    12/28/2018 ∙ by Ziyu Wang, et al. ∙ 4 share

    read it

  • Playing hard exploration games by watching YouTube

    Deep reinforcement learning methods traditionally struggle with tasks where environment rewards are particularly sparse. One successful method of guiding exploration in these domains is to imitate trajectories provided by a human demonstrator. However, these demonstrations are typically collected under artificial conditions, i.e. with access to the agent's exact environment setup and the demonstrator's action and reward trajectories. Here we propose a two-stage method that overcomes these limitations by relying on noisy, unaligned footage without access to such data. First, we learn to map unaligned videos from multiple sources to a common representation using self-supervised objectives constructed over both time and modality (i.e. vision and sound). Second, we embed a single YouTube video in this representation to construct a reward function that encourages an agent to imitate human gameplay. This method of one-shot imitation allows our agent to convincingly exceed human-level performance on the infamously hard exploration games Montezuma's Revenge, Pitfall! and Private Eye for the first time, even if the agent is not presented with any environment rewards.

    05/29/2018 ∙ by Yusuf Aytar, et al. ∙ 2 share

    read it

  • The Intentional Unintentional Agent: Learning to Solve Many Continuous Control Tasks Simultaneously

    This paper introduces the Intentional Unintentional (IU) agent. This agent endows the deep deterministic policy gradients (DDPG) agent for continuous control with the ability to solve several tasks simultaneously. Learning to solve many tasks simultaneously has been a long-standing, core goal of artificial intelligence, inspired by infant development and motivated by the desire to build flexible robot manipulators capable of many diverse behaviours. We show that the IU agent not only learns to solve many tasks simultaneously but it also learns faster than agents that target a single task at-a-time. In some cases, where the single task DDPG method completely fails, the IU agent successfully solves the task. To demonstrate this, we build a playroom environment using the MuJoCo physics engine, and introduce a grounded formal language to automatically generate tasks.

    07/11/2017 ∙ by Serkan Cabi, et al. ∙ 0 share

    read it

  • Emergence of Locomotion Behaviours in Rich Environments

    The reinforcement learning paradigm allows, in principle, for complex behaviours to be learned directly from simple reward signals. In practice, however, it is common to carefully hand-design the reward function to encourage a particular solution, or to derive it from demonstration data. In this paper explore how a rich environment can help to promote the learning of complex behavior. Specifically, we train agents in diverse environmental contexts, and find that this encourages the emergence of robust behaviours that perform well across a suite of tasks. We demonstrate this principle for locomotion -- behaviours that are known for their sensitivity to the choice of reward. We train several simulated bodies on a diverse set of challenging terrains and obstacles, using a simple reward function based on forward progress. Using a novel scalable variant of policy gradient reinforcement learning, our agents learn to run, jump, crouch and turn as required by the environment without explicit reward-based guidance. A visual depiction of highlights of the learned behavior can be viewed following https://youtu.be/hx_bgoTF7bs .

    07/07/2017 ∙ by Nicolas Heess, et al. ∙ 0 share

    read it

  • Parallel Multiscale Autoregressive Density Estimation

    PixelCNN achieves state-of-the-art results in density estimation for natural images. Although training is fast, inference is costly, requiring one network evaluation per pixel; O(N) for N pixels. This can be sped up by caching activations, but still involves generating each pixel sequentially. In this work, we propose a parallelized PixelCNN that allows more efficient inference by modeling certain pixel groups as conditionally independent. Our new PixelCNN model achieves competitive density estimation and orders of magnitude speedup - O(log N) sampling instead of O(N) - enabling the practical generation of 512x512 images. We evaluate the model on class-conditional image generation, text-to-image synthesis, and action-conditional video generation, showing that our model achieves the best results among non-pixel-autoregressive density models that allow efficient sampling.

    03/10/2017 ∙ by Scott Reed, et al. ∙ 0 share

    read it

  • Deep Fried Convnets

    The fully connected layers of a deep convolutional neural network typically contain over 90 memory required to store the network parameters. Reducing the number of parameters while preserving essentially the same predictive performance is critically important for operating deep neural networks in memory constrained environments such as GPUs or embedded devices. In this paper we show how kernel methods, in particular a single Fastfood layer, can be used to replace all fully connected layers in a deep convolutional neural network. This novel Fastfood layer is also end-to-end trainable in conjunction with convolutional layers, allowing us to combine them into a new architecture, named deep fried convolutional networks, which substantially reduces the memory footprint of convolutional networks trained on MNIST and ImageNet with no drop in predictive performance.

    12/22/2014 ∙ by Zichao Yang, et al. ∙ 0 share

    read it

  • Heteroscedastic Treed Bayesian Optimisation

    Optimising black-box functions is important in many disciplines, such as tuning machine learning models, robotics, finance and mining exploration. Bayesian optimisation is a state-of-the-art technique for the global optimisation of black-box functions which are expensive to evaluate. At the core of this approach is a Gaussian process prior that captures our belief about the distribution over functions. However, in many cases a single Gaussian process is not flexible enough to capture non-stationarity in the objective function. Consequently, heteroscedasticity negatively affects performance of traditional Bayesian methods. In this paper, we propose a novel prior model with hierarchical parameter learning that tackles the problem of non-stationarity in Bayesian optimisation. Our results demonstrate substantial improvements in a wide range of applications, including automatic machine learning and mining exploration.

    10/27/2014 ∙ by John-Alexander M. Assael, et al. ∙ 0 share

    read it