Yue Chen

is this you? claim profile

0

  • The Complexity of Planning Revisited - A Parameterized Analysis

    The early classifications of the computational complexity of planning under various restrictions in STRIPS (Bylander) and SAS+ (Baeckstroem and Nebel) have influenced following research in planning in many ways. We go back and reanalyse their subclasses, but this time using the more modern tool of parameterized complexity analysis. This provides new results that together with the old results give a more detailed picture of the complexity landscape. We demonstrate separation results not possible with standard complexity theory, which contributes to explaining why certain cases of planning have seemed simpler in practice than theory has predicted. In particular, we show that certain restrictions of practical interest are tractable in the parameterized sense of the term, and that a simple heuristic is sufficient to make a well-known partial-order planner exploit this fact.

    08/13/2012 ∙ by Christer Baeckstroem, et al. ∙ 0 share

    read it

  • Outage Performance of A Unified Non-Orthogonal Multiple Access Framework

    In this paper, a unified framework of non-orthogonal multiple access (NOMA) networks is proposed, which can be applied to code-domain NOMA (CD-NOMA) and power-domain NOMA (PD-NOMA). Since the detection of NOMA users mainly depend on efficient successive interference cancellation (SIC) schemes, both imperfect SIC (ipSIC) and perfect SIC (pSIC) are taken into considered. To characterize the performance of this unified framework, the exact and asymptotic expressions of outage probabilities as well as delay-limited throughput for CD/PD-NOMA with ipSIC/pSIC are derived. Based on the asymptotic analysis, the diversity orders of CD/PD-NOMA are provided. It is confirmed that due to the impact of residual interference (RI), the outage probability of the n-th user with ipSIC for CD/PD-NOMA converges to an error floor in the high signal-to-noise ratio (SNR) region. Numerical simulations demonstrate that the outage behavior of CD-NOMA is superior to that of PD-NOMA.

    01/24/2018 ∙ by Xinwei Yue, et al. ∙ 0 share

    read it

  • Outage Performance of Two-Way Relay Non-Orthogonal Multiple Access Systems

    This paper investigates a two-way relay nonorthogonal multiple access (TWR-NOMA) system, where two groups of NOMA users exchange messages with the aid of one half-duplex (HD) decode-and-forward (DF) relay. Since the signal-plus-interference-to-noise ratios (SINRs) of NOMA signals mainly depend on effective successive interference cancellation (SIC) schemes, imperfect SIC (ipSIC) and perfect SIC (pSIC) are taken into consideration. To characterize the performance of TWR-NOMA systems, we derive closed-form expressions for both exact and asymptotic outage probabilities of NOMA users' signals with ipSIC/pSIC. Based on the results derived, the diversity order and throughput of the system are examined. Numerical simulations demonstrate that: 1) TWR-NOMA is superior to TWR-OMA in terms of outage probability in low SNR regimes; and 2) Due to the impact of interference signal (IS) at the relay, error floors and throughput ceilings exist in outage probabilities and ergodic rates for TWR-NOMA, respectively.

    01/24/2018 ∙ by Xinwei Yue, et al. ∙ 0 share

    read it

  • Multiple Antenna Aided NOMA in UAV Networks: A Stochastic Geometry Approach

    This article investigates the multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) assisted unmanned aerial vehicles (UAVs) networks. By utilizing a stochastic geometry model, a new 3-Dimension UAV framework for providing wireless service to randomly roaming NOMA users has been proposed. In an effort to evaluate the performance of the proposed framework, we derive analytical expressions for the outage probability and the ergodic rate of MIMO-NOMA enhanced UAV networks. We examine tractable upper bounds for the whole proposed framework, with deriving asymptotic results for scenarios that transmit power of interference sources being proportional or being fixed to the UAV. For obtaining more insights for the proposed framework, we investigate the diversity order and high signal-to-noise (SNR) slope of MIMO-NOMA assisted UAV networks. Our results confirm that: i) The outage probability of NOMA enhanced UAV networks is affected to a large extent by the targeted transmission rates and power allocation factors of NOMA users; and ii) For the case that the interference power is proportional to the UAV power, there are error floors for the outage probabilities.

    05/14/2018 ∙ by Tianwei Hou, et al. ∙ 0 share

    read it

  • Energy-Efficient Mobile-Edge Computation Offloading for Applications with Shared Data

    Mobile-edge computation offloading (MECO) has been recognized as a promising solution to alleviate the burden of resource-limited Internet of Thing (IoT) devices by offloading computation tasks to the edge of cellular networks (also known as cloudlet). Specifically, latency-critical applications such as virtual reality (VR) and augmented reality (AR) have inherent collaborative properties since part of the input/output data are shared by different users in proximity. In this paper, we consider a multi-user fog computing system, in which multiple single-antenna mobile users running applications featuring shared data can choose between (partially) offloading their individual tasks to a nearby single-antenna cloudlet for remote execution and performing pure local computation. The mobile users' energy minimization is formulated as a convex problem, subject to the total computing latency constraint, the total energy constraints for individual data downloading, and the computing frequency constraints for local computing, for which classical Lagrangian duality can be applied to find the optimal solution. Based upon the semi-closed form solution, the shared data proves to be transmitted by only one of the mobile users instead of multiple ones. Besides, compared to those baseline algorithms without considering the shared data property or the mobile users' local computing capabilities, the proposed joint computation offloading and communications resource allocation provides significant energy saving.

    09/04/2018 ∙ by Xiangyu He, et al. ∙ 0 share

    read it

  • Efficient Reduced-Order Models for Soft Actuators

    Soft robotics have gained increased attention from the robotic community due to their unique features such as compliance and human safety. Impressive amount of soft robotic prototypes have shown their superior performance over their rigid counter parts in healthcare, rehabilitation, and search and rescue applications. However, soft robots are yet to capitalize on their potential outside laboratories and this could be attributed to lack of advanced sensing capabilities and real-time dynamic models. In this pilot study, we explore the use of high-accuracy, high-bandwidth deformation sensing via fiber optic strain sensing (FOSS) in soft bending actuators (SBA). Based on the high density sensor feedback, we introduce a reduced order kinematic model. Together with cubic spline interpolation, this model is able to reconstruct the continuous deformation of SBAs. The kinematic model is extended to derive an efficient real-time equation of motion and validated against the experimental data.

    11/12/2018 ∙ by Yue Chen, et al. ∙ 0 share

    read it

  • Dynamic Control of Pneumatic Muscle Actuators

    Pneumatic muscle actuators (PMA) are easy-to-fabricate, lightweight, compliant, and have high power-to-weight ratio, thus making them the ideal actuation choice for many soft and continuum robots. But so far, limited work has been carried out in dynamic control of PMAs. One reason is that PMAs are highly hysteretic. Coupled with their high compliance and response lag, PMAs are challenging to control, particularly when subjected to external loads. The hysteresis models proposed to-date rely on many physical and mechanical parameters that are difficult to measure reliably and therefore of limited use for implementing dynamic control. In this work, we employ a Bouc-Wen hysteresis modeling approach to account for the hysteresis of PMAs and use the model for implementing dynamic control. The controller is then compared to PID feedback control for a number of dynamic position tracking tests. The dynamic control based on the Bouc-Wen hysteresis model shows significantly better tracking performance. This work lays the foundation towards implementing dynamic control for PMA-powered high degrees of freedom soft and continuum robots.

    11/12/2018 ∙ by Isuru S. Godage, et al. ∙ 0 share

    read it

  • Convolution Forgetting Curve Model for Repeated Learning

    Most of mathematic forgetting curve models fit well with the forgetting data under the learning condition of one time rather than repeated. In the paper, a convolution model of forgetting curve is proposed to simulate the memory process during learning. In this model, the memory ability (i.e. the central procedure in the working memory model) and learning material (i.e. the input in the working memory model) is regarded as the system function and the input function, respectively. The status of forgetting (i.e. the output in the working memory model) is regarded as output function or the convolution result of the memory ability and learning material. The model is applied to simulate the forgetting curves in different situations. The results show that the model is able to simulate the forgetting curves not only in one time learning condition but also in multi-times condition. The model is further verified in the experiments of Mandarin tone learning for Japanese learners. And the predicted curve fits well on the test points.

    01/19/2019 ∙ by Yanlu Xie, et al. ∙ 0 share

    read it

  • Modeling and Analysis of Two-Way Relay Non-Orthogonal Multiple Access Systems

    A two-way relay non-orthogonal multiple access (TWR-NOMA) system is investigated, where two groups of NOMA users exchange messages with the aid of one half-duplex (HD) decode-and-forward (DF) relay. Since the signal-plus-interference-to-noise ratios (SINRs) of NOMA signals mainly depend on effective successive interference cancellation (SIC) schemes, imperfect SIC (ipSIC) and perfect SIC (pSIC) are taken into account. In order to characterize the performance of TWR-NOMA systems, we first derive closed-form expressions for both exact and asymptotic outage probabilities of NOMA users' signals with ipSIC/pSIC. Based on the derived results, the diversity order and throughput of the system are examined. Then we study the ergodic rates of users' signals by providing the asymptotic analysis in high SNR regimes. Lastly, numerical simulations are provided to verify the analytical results and show that: 1) TWR-NOMA is superior to TWR-OMA in terms of outage probability in low SNR regimes; 2) Due to the impact of interference signal (IS) at the relay, error floors and throughput ceilings exist in outage probabilities and ergodic rates for TWR-NOMA, respectively; and 3) In delay-limited transmission mode, TWR-NOMA with ipSIC and pSIC have almost the same energy efficiency. However, in delay-tolerant transmission mode, TWR-NOMA with pSIC is capable of achieving larger energy efficiency compared to TWR-NOMA with ipSIC.

    01/20/2019 ∙ by Xinwei Yue, et al. ∙ 0 share

    read it

  • A Unified Framework for Non-Orthogonal Multiple Access

    This paper proposes a unified framework of non-orthogonal multiple access (NOMA) networks. Stochastic geometry is employed to model the locations of spatially NOMA users. The proposed unified NOMA framework is capable of being applied to both code-domain NOMA (CD-NOMA) and power-domain NOMA (PD-NOMA). Since the detection of NOMA users mainly depend on efficient successive interference cancellation (SIC) schemes, both imperfect SIC (ipSIC) and perfect SIC (pSIC) are taken into account. To characterize the performance of the proposed unified NOMA framework, the exact and asymptotic expressions of outage probabilities as well as delay-limited throughput for CD/PD-NOMA with ipSIC/pSIC are derived. In order to obtain more insights, the diversity analysis of a pair of NOMA users (i.e., the n-th user and m-th user) are provided. Our analytical results reveal that: i) The diversity orders of the m-th and n-th user with pSIC for CD-NOMA are mK and nK, respectively; ii) Due to the influence of residual interference (RI), the n-th user with ipSIC obtains a zero diversity order; and iii) The diversity order is determined by the user who has the poorer channel conditions out of the pair. Finally, Monte Carlo simulations are presented to verify the analytical results: i) When the number of subcarriers becomes lager, the NOMA users are capable of achieving more steep slope in terms of outage probability; and ii) The outage behavior of CD-NOMA is superior to that of PD-NOMA.

    01/21/2019 ∙ by Xinwei Yue, et al. ∙ 0 share

    read it

  • Exploiting NOMA/OMA for Multi-UAV Communications in Large-Scale Networks

    This paper advocates a pair of strategies in non-orthogonal multiple access (NOMA) in unmanned aerial vehicles (UAVs) communications, where multiple UAVs play as new aerial communications platforms for serving terrestrial NOMA users. A new multiple UAVs framework with invoking stochastic geometry technique is proposed, in which a pair of practical strategies are considered: 1) UAV-Centric strategy for offloading actions and 2) User-Centric strategy for providing emergency communications. In order to provide practical insights for the proposed NOMA assisted UAV framework, an imperfect successive interference cancelation (ipSIC) scenario is taken into account. For both UAV-Centric strategy and User-Centric strategy, we derive new exact expressions for the coverage probability. We also derive new analytical results for orthogonal multiple access (OMA) for providing a benchmark scheme. The derived analytical results in both User-Centric strategy and UAV-Centric strategy explicitly indicate that the ipSIC coefficient is a dominant component in terms of coverage probability. Numerical results are provided to confirm that i) for both User-Centric strategy and UAV-Centric strategy, NOMA assisted multi-UAV networks is capable of outperforming OMA by setting power allocation factors and targeted rate properly; and ii) the coverage probability of NOMA assisted multi-UAV framework is affected to a large extent by ipSIC coefficient, target rates and power allocations factors of paired NOMA users.

    02/05/2019 ∙ by Tianwei Hou, et al. ∙ 0 share

    read it