Xiaoxiao Li

is this you? claim profile

0

  • Deep Flow-Guided Video Inpainting

    Video inpainting, which aims at filling in missing regions of a video, remains challenging due to the difficulty of preserving the precise spatial and temporal coherence of video contents. In this work we propose a novel flow-guided video inpainting approach. Rather than filling in the RGB pixels of each frame directly, we consider video inpainting as a pixel propagation problem. We first synthesize a spatially and temporally coherent optical flow field across video frames using a newly designed Deep Flow Completion network. Then the synthesized flow field is used to guide the propagation of pixels to fill up the missing regions in the video. Specifically, the Deep Flow Completion network follows a coarse-to-fine refinement to complete the flow fields, while their quality is further improved by hard flow example mining. Following the guide of the completed flow, the missing video regions can be filled up precisely. Our method is evaluated on DAVIS and YouTube-VOS datasets qualitatively and quantitatively, achieving the state-of-the-art performance in terms of inpainting quality and speed.

    05/08/2019 ∙ by Rui Xu, et al. ∙ 14 share

    read it

  • Hybrid Task Cascade for Instance Segmentation

    Cascade is a classic yet powerful architecture that has boosted performance on various tasks. However, how to introduce cascade to instance segmentation remains an open question. A simple combination of Cascade R-CNN and Mask R-CNN only brings limited gain. In exploring a more effective approach, we find that the key to a successful instance segmentation cascade is to fully leverage the reciprocal relationship between detection and segmentation. In this work, we propose a new framework, Hybrid Task Cascade (HTC), which differs in two important aspects: (1) instead of performing cascaded refinement on these two tasks separately, it interweaves them for a joint multi-stage processing; (2) it adopts a fully convolutional branch to provide spatial context, which can help distinguishing hard foreground from cluttered background. Overall, this framework can learn more discriminative features progressively while integrating complementary features together in each stage. Without bells and whistles, a single HTC obtains 38.4 Mask R-CNN baseline on MSCOCO dataset. More importantly, our overall system achieves 48.6 mask AP on the test-challenge dataset and 49.0 mask AP on test-dev, which are the state-of-the-art performance.

    01/22/2019 ∙ by Kai Chen, et al. ∙ 6 share

    read it

  • Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI

    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Finding the biomarkers associated with ASD is extremely helpful to understand the underlying roots of the disorder and can lead to earlier diagnosis and more targeted treatment. Although Deep Neural Networks (DNNs) have been applied in functional magnetic resonance imaging (fMRI) to identify ASD, understanding the data-driven computational decision making procedure has not been previously explored. Therefore, in this work, we address the problem of interpreting reliable biomarkers associated with identifying ASD; specifically, we propose a 2-stage method that classifies ASD and control subjects using fMRI images and interprets the saliency features activated by the classifier. First, we trained an accurate DNN classifier. Then, for detecting the biomarkers, different from the DNN visualization works in computer vision, we take advantage of the anatomical structure of brain fMRI and develop a frequency-normalized sampling method to corrupt images. Furthermore, in the ASD vs. control subjects classification scenario, we provide a new approach to detect and characterize important brain features into three categories. The biomarkers we found by the proposed method are robust and consistent with previous findings in the literature. We also validate the detected biomarkers by neurological function decoding and comparing with the DNN activation maps.

    08/23/2018 ∙ by Xiaoxiao Li, et al. ∙ 4 share

    read it

  • MMDetection: Open MMLab Detection Toolbox and Benchmark

    We present MMDetection, an object detection toolbox that contains a rich set of object detection and instance segmentation methods as well as related components and modules. The toolbox started from a codebase of MMDet team who won the detection track of COCO Challenge 2018. It gradually evolves into a unified platform that covers many popular detection methods and contemporary modules. It not only includes training and inference codes, but also provides weights for more than 200 network models. We believe this toolbox is by far the most complete detection toolbox. In this paper, we introduce the various features of this toolbox. In addition, we also conduct a benchmarking study on different methods, components, and their hyper-parameters. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors. Code and models are available at https://github.com/open-mmlab/mmdetection. The project is under active development and we will keep this document updated.

    06/17/2019 ∙ by Kai Chen, et al. ∙ 1 share

    read it

  • Video Object Segmentation with Re-identification

    Conventional video segmentation methods often rely on temporal continuity to propagate masks. Such an assumption suffers from issues like drifting and inability to handle large displacement. To overcome these issues, we formulate an effective mechanism to prevent the target from being lost via adaptive object re-identification. Specifically, our Video Object Segmentation with Re-identification (VS-ReID) model includes a mask propagation module and a ReID module. The former module produces an initial probability map by flow warping while the latter module retrieves missing instances by adaptive matching. With these two modules iteratively applied, our VS-ReID records a global mean (Region Jaccard and Boundary F measure) of 0.699, the best performance in 2017 DAVIS Challenge.

    08/01/2017 ∙ by Xiaoxiao Li, et al. ∙ 0 share

    read it

  • Not All Pixels Are Equal: Difficulty-aware Semantic Segmentation via Deep Layer Cascade

    We propose a novel deep layer cascade (LC) method to improve the accuracy and speed of semantic segmentation. Unlike the conventional model cascade (MC) that is composed of multiple independent models, LC treats a single deep model as a cascade of several sub-models. Earlier sub-models are trained to handle easy and confident regions, and they progressively feed-forward harder regions to the next sub-model for processing. Convolutions are only calculated on these regions to reduce computations. The proposed method possesses several advantages. First, LC classifies most of the easy regions in the shallow stage and makes deeper stage focuses on a few hard regions. Such an adaptive and 'difficulty-aware' learning improves segmentation performance. Second, LC accelerates both training and testing of deep network thanks to early decisions in the shallow stage. Third, in comparison to MC, LC is an end-to-end trainable framework, allowing joint learning of all sub-models. We evaluate our method on PASCAL VOC and Cityscapes datasets, achieving state-of-the-art performance and fast speed.

    04/05/2017 ∙ by Xiaoxiao Li, et al. ∙ 0 share

    read it

  • Deep Learning Markov Random Field for Semantic Segmentation

    Semantic segmentation tasks can be well modeled by Markov Random Field (MRF). This paper addresses semantic segmentation by incorporating high-order relations and mixture of label contexts into MRF. Unlike previous works that optimized MRFs using iterative algorithm, we solve MRF by proposing a Convolutional Neural Network (CNN), namely Deep Parsing Network (DPN), which enables deterministic end-to-end computation in a single forward pass. Specifically, DPN extends a contemporary CNN to model unary terms and additional layers are devised to approximate the mean field (MF) algorithm for pairwise terms. It has several appealing properties. First, different from the recent works that required many iterations of MF during back-propagation, DPN is able to achieve high performance by approximating one iteration of MF. Second, DPN represents various types of pairwise terms, making many existing models as its special cases. Furthermore, pairwise terms in DPN provide a unified framework to encode rich contextual information in high-dimensional data, such as images and videos. Third, DPN makes MF easier to be parallelized and speeded up, thus enabling efficient inference. DPN is thoroughly evaluated on standard semantic image/video segmentation benchmarks, where a single DPN model yields state-of-the-art segmentation accuracies on PASCAL VOC 2012, Cityscapes dataset and CamVid dataset.

    06/23/2016 ∙ by Ziwei Liu, et al. ∙ 0 share

    read it

  • Semantic Image Segmentation via Deep Parsing Network

    This paper addresses semantic image segmentation by incorporating rich information into Markov Random Field (MRF), including high-order relations and mixture of label contexts. Unlike previous works that optimized MRFs using iterative algorithm, we solve MRF by proposing a Convolutional Neural Network (CNN), namely Deep Parsing Network (DPN), which enables deterministic end-to-end computation in a single forward pass. Specifically, DPN extends a contemporary CNN architecture to model unary terms and additional layers are carefully devised to approximate the mean field algorithm (MF) for pairwise terms. It has several appealing properties. First, different from the recent works that combined CNN and MRF, where many iterations of MF were required for each training image during back-propagation, DPN is able to achieve high performance by approximating one iteration of MF. Second, DPN represents various types of pairwise terms, making many existing works as its special cases. Third, DPN makes MF easier to be parallelized and speeded up in Graphical Processing Unit (GPU). DPN is thoroughly evaluated on the PASCAL VOC 2012 dataset, where a single DPN model yields a new state-of-the-art segmentation accuracy.

    09/09/2015 ∙ by Ziwei Liu, et al. ∙ 0 share

    read it

  • Video Object Segmentation with Joint Re-identification and Attention-Aware Mask Propagation

    The problem of video object segmentation can become extremely challenging when multiple instances co-exist. While each instance may exhibit large scale and pose variations, the problem is compounded when instances occlude each other causing failures in tracking. In this study, we formulate a deep recurrent network that is capable of segmenting and tracking objects in video simultaneously by their temporal continuity, yet able to re-identify them when they re-appear after a prolonged occlusion. We combine both temporal propagation and re-identification functionalities into a single framework that can be trained end-to-end. In particular, we present a re-identification module with template expansion to retrieve missing objects despite their large appearance changes. In addition, we contribute a new attention-based recurrent mask propagation approach that is robust to distractors not belonging to the target segment. Our approach achieves a new state-of-the-art global mean (Region Jaccard and Boundary F measure) of 68.2 on the challenging DAVIS 2017 benchmark (test-dev set), outperforming the winning solution which achieves a global mean of 66.1 on the same partition.

    03/12/2018 ∙ by Xiaoxiao Li, et al. ∙ 0 share

    read it

  • What evidence does deep learning model use to classify Skin Lesions?

    Melanoma is a type of skin cancer with the most rapidly increasing incidence. Early detection of melanoma using dermoscopy images significantly increases patients' survival rate. However, accurately classifying skin lesions, especially in the early stage, is extremely challenging via dermatologists' observation. Hence, the discovery of reliable biomarkers for melanoma diagnosis will be meaningful. Recent years, deep learning empowered computer-assisted diagnosis has been shown its value in medical imaging-based decision making. However, lots of research focus on improving disease detection accuracy but not exploring the evidence of pathology. In this paper, we propose a method to interpret the deep learning classification findings. Firstly, we propose an accurate neural network architecture to classify skin lesion. Secondly, we utilize a prediction difference analysis method that examining each patch on the image through patch wised corrupting for detecting the biomarkers. Lastly, we validate that our biomarker findings are corresponding to the patterns in the literature. The findings might be significant to guide clinical diagnosis.

    11/02/2018 ∙ by Junyan Wu, et al. ∙ 0 share

    read it

  • Repetitive Motion Estimation Network: Recover cardiac and respiratory signal from thoracic imaging

    Tracking organ motion is important in image-guided interventions, but motion annotations are not always easily available. Thus, we propose Repetitive Motion Estimation Network (RMEN) to recover cardiac and respiratory signals. It learns the spatio-temporal repetition patterns, embedding high dimensional motion manifolds to 1D vectors with partial motion phase boundary annotations. Compared with the best alternative models, our proposed RMEN significantly decreased the QRS peaks detection offsets by 59.3 could handle the irregular cardiac and respiratory motion cases. Repetitive motion patterns learned by RMEN were visualized and indicated in the feature maps.

    11/08/2018 ∙ by Xiaoxiao Li, et al. ∙ 0 share

    read it