Wenjie Hu

is this you? claim profile

0

  • Mapping Missing Population in Rural India: A Deep Learning Approach with Satellite Imagery

    Millions of people worldwide are absent from their country's census. Accurate, current, and granular population metrics are critical to improving government allocation of resources, to measuring disease control, to responding to natural disasters, and to studying any aspect of human life in these communities. Satellite imagery can provide sufficient information to build a population map without the cost and time of a government census. We present two Convolutional Neural Network (CNN) architectures which efficiently and effectively combine satellite imagery inputs from multiple sources to accurately predict the population density of a region. In this paper, we use satellite imagery from rural villages in India and population labels from the 2011 SECC census. Our best model achieves better performance than previous papers as well as LandScan, a community standard for global population distribution.

    05/04/2019 ∙ by Wenjie Hu, et al. ∙ 14 share

    read it

  • Modeling Combinatorial Evolution in Time Series Prediction

    Time series modeling aims to capture the intrinsic factors underpinning observed data and its evolution. However, most existing studies ignore the evolutionary relations among these factors, which are what cause the combinatorial evolution of a given time series. In this paper, we propose to represent time-varying relations among intrinsic factors of time series data by means of an evolutionary state graph structure. Accordingly, we propose the Evolutionary Graph Recurrent Networks (EGRN) to learn representations of these factors, along with the given time series, using a graph neural network framework. The learned representations can then be applied to time series classification tasks. From our experiment results, based on six real-world datasets, it can be seen that our approach clearly outperforms ten state-of-the-art baseline methods (e.g. +5 terms of F1 on average). In addition, we demonstrate that due to the graph structure's improved interpretability, our method is also able to explain the logical causes of the predicted events.

    05/10/2019 ∙ by Wenjie Hu, et al. ∙ 8 share

    read it

  • Representation Learning for Scale-free Networks

    Network embedding aims to learn the low-dimensional representations of vertexes in a network, while structure and inherent properties of the network is preserved. Existing network embedding works primarily focus on preserving the microscopic structure, such as the first- and second-order proximity of vertexes, while the macroscopic scale-free property is largely ignored. Scale-free property depicts the fact that vertex degrees follow a heavy-tailed distribution (i.e., only a few vertexes have high degrees) and is a critical property of real-world networks, such as social networks. In this paper, we study the problem of learning representations for scale-free networks. We first theoretically analyze the difficulty of embedding and reconstructing a scale-free network in the Euclidean space, by converting our problem to the sphere packing problem. Then, we propose the "degree penalty" principle for designing scale-free property preserving network embedding algorithm: punishing the proximity between high-degree vertexes. We introduce two implementations of our principle by utilizing the spectral techniques and a skip-gram model respectively. Extensive experiments on six datasets show that our algorithms are able to not only reconstruct heavy-tailed distributed degree distribution, but also outperform state-of-the-art embedding models in various network mining tasks, such as vertex classification and link prediction.

    11/29/2017 ∙ by Rui Feng, et al. ∙ 0 share

    read it

  • Capturing Evolution Genes for Time Series Data

    The modeling of time series is becoming increasingly critical in a wide variety of applications. Overall, data evolves by following different patterns, which are generally caused by different user behaviors. Given a time series, we define the evolution gene to capture the latent user behaviors and to describe how the behaviors lead to the generation of time series. In particular, we propose a uniform framework that recognizes different evolution genes of segments by learning a classifier, and adopt an adversarial generator to implement the evolution gene by estimating the segments' distribution. Experimental results based on a synthetic dataset and five real-world datasets show that our approach can not only achieve a good prediction results (e.g., averagely +10.56 the results.

    05/10/2019 ∙ by Wenjie Hu, et al. ∙ 0 share

    read it