Tomas Mikolov

is this you? claim profile

0

Research Scientist at Facebook AI Research

  • Exploiting Similarities among Languages for Machine Translation

    Dictionaries and phrase tables are the basis of modern statistical machine translation systems. This paper develops a method that can automate the process of generating and extending dictionaries and phrase tables. Our method can translate missing word and phrase entries by learning language structures based on large monolingual data and mapping between languages from small bilingual data. It uses distributed representation of words and learns a linear mapping between vector spaces of languages. Despite its simplicity, our method is surprisingly effective: we can achieve almost 90 of words between English and Spanish. This method makes little assumption about the languages, so it can be used to extend and refine dictionaries and translation tables for any language pairs.

    09/17/2013 ∙ by Tomas Mikolov, et al. ∙ 0 share

    read it

  • Distributed Representations of Words and Phrases and their Compositionality

    The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.

    10/16/2013 ∙ by Tomas Mikolov, et al. ∙ 0 share

    read it

  • Fast Linear Model for Knowledge Graph Embeddings

    This paper shows that a simple baseline based on a Bag-of-Words (BoW) representation learns surprisingly good knowledge graph embeddings. By casting knowledge base completion and question answering as supervised classification problems, we observe that modeling co-occurences of entities and relations leads to state-of-the-art performance with a training time of a few minutes using the open sourced library fastText.

    10/30/2017 ∙ by Armand Joulin, et al. ∙ 0 share

    read it

  • Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets

    Despite the recent achievements in machine learning, we are still very far from achieving real artificial intelligence. In this paper, we discuss the limitations of standard deep learning approaches and show that some of these limitations can be overcome by learning how to grow the complexity of a model in a structured way. Specifically, we study the simplest sequence prediction problems that are beyond the scope of what is learnable with standard recurrent networks, algorithmically generated sequences which can only be learned by models which have the capacity to count and to memorize sequences. We show that some basic algorithms can be learned from sequential data using a recurrent network associated with a trainable memory.

    03/03/2015 ∙ by Armand Joulin, et al. ∙ 0 share

    read it

  • Learning Longer Memory in Recurrent Neural Networks

    Recurrent neural network is a powerful model that learns temporal patterns in sequential data. For a long time, it was believed that recurrent networks are difficult to train using simple optimizers, such as stochastic gradient descent, due to the so-called vanishing gradient problem. In this paper, we show that learning longer term patterns in real data, such as in natural language, is perfectly possible using gradient descent. This is achieved by using a slight structural modification of the simple recurrent neural network architecture. We encourage some of the hidden units to change their state slowly by making part of the recurrent weight matrix close to identity, thus forming kind of a longer term memory. We evaluate our model in language modeling experiments, where we obtain similar performance to the much more complex Long Short Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997).

    12/24/2014 ∙ by Tomas Mikolov, et al. ∙ 0 share

    read it

  • Learning Simple Algorithms from Examples

    We present an approach for learning simple algorithms such as copying, multi-digit addition and single digit multiplication directly from examples. Our framework consists of a set of interfaces, accessed by a controller. Typical interfaces are 1-D tapes or 2-D grids that hold the input and output data. For the controller, we explore a range of neural network-based models which vary in their ability to abstract the underlying algorithm from training instances and generalize to test examples with many thousands of digits. The controller is trained using Q-learning with several enhancements and we show that the bottleneck is in the capabilities of the controller rather than in the search incurred by Q-learning.

    11/23/2015 ∙ by Wojciech Zaremba, et al. ∙ 0 share

    read it

  • Distributed Representations of Sentences and Documents

    Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the ordering of the words and they also ignore semantics of the words. For example, "powerful," "strong" and "Paris" are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algorithm represents each document by a dense vector which is trained to predict words in the document. Its construction gives our algorithm the potential to overcome the weaknesses of bag-of-words models. Empirical results show that Paragraph Vectors outperform bag-of-words models as well as other techniques for text representations. Finally, we achieve new state-of-the-art results on several text classification and sentiment analysis tasks.

    05/16/2014 ∙ by Quoc V. Le, et al. ∙ 0 share

    read it

  • Learning Simpler Language Models with the Differential State Framework

    Learning useful information across long time lags is a critical and difficult problem for temporal neural models in tasks such as language modeling. Existing architectures that address the issue are often complex and costly to train. The Differential State Framework (DSF) is a simple and high-performing design that unifies previously introduced gated neural models. DSF models maintain longer-term memory by learning to interpolate between a fast-changing data-driven representation and a slowly changing, implicitly stable state. This requires hardly any more parameters than a classical, simple recurrent network. Within the DSF framework, a new architecture is presented, the Delta-RNN. In language modeling at the word and character levels, the Delta-RNN outperforms popular complex architectures, such as the Long Short Term Memory (LSTM) and the Gated Recurrent Unit (GRU), and, when regularized, performs comparably to several state-of-the-art baselines. At the subword level, the Delta-RNN's performance is comparable to that of complex gated architectures.

    03/26/2017 ∙ by Alexander G. Ororbia II, et al. ∙ 0 share

    read it

  • CommAI: Evaluating the first steps towards a useful general AI

    With machine learning successfully applied to new daunting problems almost every day, general AI starts looking like an attainable goal. However, most current research focuses instead on important but narrow applications, such as image classification or machine translation. We believe this to be largely due to the lack of objective ways to measure progress towards broad machine intelligence. In order to fill this gap, we propose here a set of concrete desiderata for general AI, together with a platform to test machines on how well they satisfy such desiderata, while keeping all further complexities to a minimum.

    01/31/2017 ∙ by Marco Baroni, et al. ∙ 0 share

    read it

  • FastText.zip: Compressing text classification models

    We consider the problem of producing compact architectures for text classification, such that the full model fits in a limited amount of memory. After considering different solutions inspired by the hashing literature, we propose a method built upon product quantization to store word embeddings. While the original technique leads to a loss in accuracy, we adapt this method to circumvent quantization artefacts. Our experiments carried out on several benchmarks show that our approach typically requires two orders of magnitude less memory than fastText while being only slightly inferior with respect to accuracy. As a result, it outperforms the state of the art by a good margin in terms of the compromise between memory usage and accuracy.

    12/12/2016 ∙ by Armand Joulin, et al. ∙ 0 share

    read it

  • Variable Computation in Recurrent Neural Networks

    Recurrent neural networks (RNNs) have been used extensively and with increasing success to model various types of sequential data. Much of this progress has been achieved through devising recurrent units and architectures with the flexibility to capture complex statistics in the data, such as long range dependency or localized attention phenomena. However, while many sequential data (such as video, speech or language) can have highly variable information flow, most recurrent models still consume input features at a constant rate and perform a constant number of computations per time step, which can be detrimental to both speed and model capacity. In this paper, we explore a modification to existing recurrent units which allows them to learn to vary the amount of computation they perform at each step, without prior knowledge of the sequence's time structure. We show experimentally that not only do our models require fewer operations, they also lead to better performance overall on evaluation tasks.

    11/18/2016 ∙ by Yacine Jernite, et al. ∙ 0 share

    read it