Szymon Sidor

is this you? claim profile

0

  • Emergent Complexity via Multi-Agent Competition

    Reinforcement learning algorithms can train agents that solve problems in complex, interesting environments. Normally, the complexity of the trained agent is closely related to the complexity of the environment. This suggests that a highly capable agent requires a complex environment for training. In this paper, we point out that a competitive multi-agent environment trained with self-play can produce behaviors that are far more complex than the environment itself. We also point out that such environments come with a natural curriculum, because for any skill level, an environment full of agents of this level will have the right level of difficulty. This work introduces several competitive multi-agent environments where agents compete in a 3D world with simulated physics. The trained agents learn a wide variety of complex and interesting skills, even though the environment themselves are relatively simple. The skills include behaviors such as running, blocking, ducking, tackling, fooling opponents, kicking, and defending using both arms and legs. A highlight of the learned behaviors can be found here: https://goo.gl/eR7fbX

    10/10/2017 ∙ by Trapit Bansal, et al. ∙ 0 share

    read it

  • Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics

    The recent adaptation of deep neural network-based methods to reinforcement learning and planning domains has yielded remarkable progress on individual tasks. Nonetheless, progress on task-to-task transfer remains limited. In pursuit of efficient and robust generalization, we introduce the Schema Network, an object-oriented generative physics simulator capable of disentangling multiple causes of events and reasoning backward through causes to achieve goals. The richly structured architecture of the Schema Network can learn the dynamics of an environment directly from data. We compare Schema Networks with Asynchronous Advantage Actor-Critic and Progressive Networks on a suite of Breakout variations, reporting results on training efficiency and zero-shot generalization, consistently demonstrating faster, more robust learning and better transfer. We argue that generalizing from limited data and learning causal relationships are essential abilities on the path toward generally intelligent systems.

    06/14/2017 ∙ by Ken Kansky, et al. ∙ 0 share

    read it

  • Parameter Space Noise for Exploration

    Deep reinforcement learning (RL) methods generally engage in exploratory behavior through noise injection in the action space. An alternative is to add noise directly to the agent's parameters, which can lead to more consistent exploration and a richer set of behaviors. Methods such as evolutionary strategies use parameter perturbations, but discard all temporal structure in the process and require significantly more samples. Combining parameter noise with traditional RL methods allows to combine the best of both worlds. We demonstrate that both off- and on-policy methods benefit from this approach through experimental comparison of DQN, DDPG, and TRPO on high-dimensional discrete action environments as well as continuous control tasks. Our results show that RL with parameter noise learns more efficiently than traditional RL with action space noise and evolutionary strategies individually.

    06/06/2017 ∙ by Matthias Plappert, et al. ∙ 0 share

    read it

  • UCB Exploration via Q-Ensembles

    We show how an ensemble of Q^*-functions can be leveraged for more effective exploration in deep reinforcement learning. We build on well established algorithms from the bandit setting, and adapt them to the Q-learning setting. We propose an exploration strategy based on upper-confidence bounds (UCB). Our experiments show significant gains on the Atari benchmark.

    06/05/2017 ∙ by Richard Y. Chen, et al. ∙ 0 share

    read it

  • Evolution Strategies as a Scalable Alternative to Reinforcement Learning

    We explore the use of Evolution Strategies (ES), a class of black box optimization algorithms, as an alternative to popular MDP-based RL techniques such as Q-learning and Policy Gradients. Experiments on MuJoCo and Atari show that ES is a viable solution strategy that scales extremely well with the number of CPUs available: By using a novel communication strategy based on common random numbers, our ES implementation only needs to communicate scalars, making it possible to scale to over a thousand parallel workers. This allows us to solve 3D humanoid walking in 10 minutes and obtain competitive results on most Atari games after one hour of training. In addition, we highlight several advantages of ES as a black box optimization technique: it is invariant to action frequency and delayed rewards, tolerant of extremely long horizons, and does not need temporal discounting or value function approximation.

    03/10/2017 ∙ by Tim Salimans, et al. ∙ 0 share

    read it

  • Time Resource Networks

    The problem of scheduling under resource constraints is widely applicable. One prominent example is power management, in which we have a limited continuous supply of power but must schedule a number of power-consuming tasks. Such problems feature tightly coupled continuous resource constraints and continuous temporal constraints. We address such problems by introducing the Time Resource Network (TRN), an encoding for resource-constrained scheduling problems. The definition allows temporal specifications using a general family of representations derived from the Simple Temporal network, including the Simple Temporal Network with Uncertainty, and the probabilistic Simple Temporal Network (Fang et al. (2014)). We propose two algorithms for determining the consistency of a TRN: one based on Mixed Integer Programing and the other one based on Constraint Programming, which we evaluate on scheduling problems with Simple Temporal Constraints and Probabilistic Temporal Constraints.

    02/09/2016 ∙ by Szymon Sidor, et al. ∙ 0 share

    read it