Paris Perdikaris

is this you? claim profile

0 followers

  • Multi-fidelity classification using Gaussian processes: accelerating the prediction of large-scale computational models

    Machine learning techniques typically rely on large datasets to create accurate classifiers. However, there are situations when data is scarce and expensive to acquire. This is the case of studies that rely on state-of-the-art computational models which typically take days to run, thus hindering the potential of machine learning tools. In this work, we present a novel classifier that takes advantage of lower fidelity models and inexpensive approximations to predict the binary output of expensive computer simulations. We postulate an autoregressive model between the different levels of fidelity with Gaussian process priors. We adopt a fully Bayesian treatment for the hyper-parameters and use Markov Chain Mont Carlo samplers. We take advantage of the probabilistic nature of the classifier to implement active learning strategies. We also introduce a sparse approximation to enhance the ability of themulti-fidelity classifier to handle large datasets. We test these multi-fidelity classifiers against their single-fidelity counterpart with synthetic data, showing a median computational cost reduction of 23 target accuracy of 90 multi-fidelity classifier achieves an F1 score, the harmonic mean of precision and recall, of 99.6 both are trained with 50 samples. In general, our results show that the multi-fidelity classifiers outperform their single-fidelity counterpart in terms of accuracy in all cases. We envision that this new tool will enable researchers to study classification problems that would otherwise be prohibitively expensive. Source code is available at https://github.com/fsahli/MFclass.

    05/09/2019 ∙ by Francisco Sahli Costabal, et al. ∙ 10 share

    read it

  • Adversarial Uncertainty Quantification in Physics-Informed Neural Networks

    We present a deep learning framework for quantifying and propagating uncertainty in systems governed by non-linear differential equations using physics-informed neural networks. Specifically, we employ latent variable models to construct probabilistic representations for the system states, and put forth an adversarial inference procedure for training them on data, while constraining their predictions to satisfy given physical laws expressed by partial differential equations. Such physics-informed constraints provide a regularization mechanism for effectively training deep generative models as surrogates of physical systems in which the cost of data acquisition is high, and training data-sets are typically small. This provides a flexible framework for characterizing uncertainty in the outputs of physical systems due to randomness in their inputs or noise in their observations that entirely bypasses the need for repeatedly sampling expensive experiments or numerical simulators. We demonstrate the effectiveness of our approach through a series of examples involving uncertainty propagation in non-linear conservation laws, and the discovery of constitutive laws for flow through porous media directly from noisy data.

    11/09/2018 ∙ by Yibo Yang, et al. ∙ 6 share

    read it

  • Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations

    We introduce physics informed neural networks -- neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations. In this second part of our two-part treatise, we focus on the problem of data-driven discovery of partial differential equations. Depending on whether the available data is scattered in space-time or arranged in fixed temporal snapshots, we introduce two main classes of algorithms, namely continuous time and discrete time models. The effectiveness of our approach is demonstrated using a wide range of benchmark problems in mathematical physics, including conservation laws, incompressible fluid flow, and the propagation of nonlinear shallow-water waves.

    11/28/2017 ∙ by Maziar Raissi, et al. ∙ 0 share

    read it

  • Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems

    The process of transforming observed data into predictive mathematical models of the physical world has always been paramount in science and engineering. Although data is currently being collected at an ever-increasing pace, devising meaningful models out of such observations in an automated fashion still remains an open problem. In this work, we put forth a machine learning approach for identifying nonlinear dynamical systems from data. Specifically, we blend classical tools from numerical analysis, namely the multi-step time-stepping schemes, with powerful nonlinear function approximators, namely deep neural networks, to distill the mechanisms that govern the evolution of a given data-set. We test the effectiveness of our approach for several benchmark problems involving the identification of complex, nonlinear and chaotic dynamics, and we demonstrate how this allows us to accurately learn the dynamics, forecast future states, and identify basins of attraction. In particular, we study the Lorenz system, the fluid flow behind a cylinder, the Hopf bifurcation, and the Glycoltic oscillator model as an example of complicated nonlinear dynamics typical of biological systems.

    01/04/2018 ∙ by Maziar Raissi, et al. ∙ 0 share

    read it

  • Numerical Gaussian Processes for Time-dependent and Non-linear Partial Differential Equations

    We introduce the concept of numerical Gaussian processes, which we define as Gaussian processes with covariance functions resulting from temporal discretization of time-dependent partial differential equations. Numerical Gaussian processes, by construction, are designed to deal with cases where: (1) all we observe are noisy data on black-box initial conditions, and (2) we are interested in quantifying the uncertainty associated with such noisy data in our solutions to time-dependent partial differential equations. Our method circumvents the need for spatial discretization of the differential operators by proper placement of Gaussian process priors. This is an attempt to construct structured and data-efficient learning machines, which are explicitly informed by the underlying physics that possibly generated the observed data. The effectiveness of the proposed approach is demonstrated through several benchmark problems involving linear and nonlinear time-dependent operators. In all examples, we are able to recover accurate approximations of the latent solutions, and consistently propagate uncertainty, even in cases involving very long time integration.

    03/29/2017 ∙ by Maziar Raissi, et al. ∙ 0 share

    read it

  • Machine Learning of Space-Fractional Differential Equations

    Data-driven discovery of "hidden physics" -- i.e., machine learning of differential equation models underlying observed data -- has recently been approached by embedding the discovery problem into a Gaussian Process regression of spatial data, treating and discovering unknown equation parameters as hyperparameters of a modified "physics informed" Gaussian Process kernel. This kernel includes the parametrized differential operators applied to a prior covariance kernel. We extend this framework to linear space-fractional differential equations. The methodology is compatible with a wide variety of fractional operators in R^d and stationary covariance kernels, including the Matern class, and can optimize the Matern parameter during training. We provide a user-friendly and feasible way to perform fractional derivatives of kernels, via a unified set of d-dimensional Fourier integral formulas amenable to generalized Gauss-Laguerre quadrature. The implementation of fractional derivatives has several benefits. First, it allows for discovering fractional-order PDEs for systems characterized by heavy tails or anomalous diffusion, bypassing the analytical difficulty of fractional calculus. Data sets exhibiting such features are of increasing prevalence in physical and financial domains. Second, a single fractional-order archetype allows for a derivative of arbitrary order to be learned, with the order itself being a parameter in the regression. This is advantageous even when used for discovering integer-order equations; the user is not required to assume a "dictionary" of derivatives of various orders, and directly controls the parsimony of the models being discovered. We illustrate on several examples, including fractional-order interpolation of advection-diffusion and modeling relative stock performance in the S&P 500 with alpha-stable motion via a fractional diffusion equation.

    08/02/2018 ∙ by Mamikon Gulian, et al. ∙ 0 share

    read it

  • Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations

    We introduce physics informed neural networks -- neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations. In this two part treatise, we present our developments in the context of solving two main classes of problems: data-driven solution and data-driven discovery of partial differential equations. Depending on the nature and arrangement of the available data, we devise two distinct classes of algorithms, namely continuous time and discrete time models. The resulting neural networks form a new class of data-efficient universal function approximators that naturally encode any underlying physical laws as prior information. In this first part, we demonstrate how these networks can be used to infer solutions to partial differential equations, and obtain physics-informed surrogate models that are fully differentiable with respect to all input coordinates and free parameters.

    11/28/2017 ∙ by Maziar Raissi, et al. ∙ 0 share

    read it

  • Physics-informed deep generative models

    We consider the application of deep generative models in propagating uncertainty through complex physical systems. Specifically, we put forth an implicit variational inference formulation that constrains the generative model output to satisfy given physical laws expressed by partial differential equations. Such physics-informed constraints provide a regularization mechanism for effectively training deep probabilistic models for modeling physical systems in which the cost of data acquisition is high and training data-sets are typically small. This provides a scalable framework for characterizing uncertainty in the outputs of physical systems due to randomness in their inputs or noise in their observations. We demonstrate the effectiveness of our approach through a canonical example in transport dynamics.

    12/09/2018 ∙ by Yibo Yang, et al. ∙ 0 share

    read it

  • Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems

    We present a probabilistic deep learning methodology that enables the construction of predictive data-driven surrogates for stochastic systems. Leveraging recent advances in variational inference with implicit distributions, we put forth a statistical inference framework that enables the end-to-end training of surrogate models on paired input-output observations that may be stochastic in nature, originate from different information sources of variable fidelity, or be corrupted by complex noise processes. The resulting surrogates can accommodate high-dimensional inputs and outputs and are able to return predictions with quantified uncertainty. The effectiveness our approach is demonstrated through a series of canonical studies, including the regression of noisy data, multi-fidelity modeling of stochastic processes, and uncertainty propagation in high-dimensional dynamical systems.

    01/15/2019 ∙ by Yibo Yang, et al. ∙ 0 share

    read it

  • Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data

    Surrogate modeling and uncertainty quantification tasks for PDE systems are most often considered as supervised learning problems where input and output data pairs are used for training. The construction of such emulators is by definition a small data problem which poses challenges to deep learning approaches that have been developed to operate in the big data regime. Even in cases where such models have been shown to have good predictive capability in high dimensions, they fail to address constraints in the data implied by the PDE model. This paper provides a methodology that incorporates the governing equations of the physical model in the loss/likelihood functions. The resulting physics-constrained, deep learning models are trained without any labeled data (e.g. employing only input data) and provide comparable predictive responses with data-driven models while obeying the constraints of the problem at hand. This work employs a convolutional encoder-decoder neural network approach as well as a conditional flow-based generative model for the solution of PDEs, surrogate model construction, and uncertainty quantification tasks. The methodology is posed as a minimization problem of the reverse Kullback-Leibler (KL) divergence between the model predictive density and the reference conditional density, where the later is defined as the Boltzmann-Gibbs distribution at a given inverse temperature with the underlying potential relating to the PDE system of interest. The generalization capability of these models to out-of-distribution input is considered. Quantification and interpretation of the predictive uncertainty is provided for a number of problems.

    01/18/2019 ∙ by Yinhao Zhu, et al. ∙ 0 share

    read it

  • Machine learning in cardiovascular flows modeling: Predicting pulse wave propagation from non-invasive clinical measurements using physics-informed deep learning

    Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for monitoring, diagnostics and surgical planning. Such models can be nowadays deployed on large patient-specific topologies of systemic arterial networks and return detailed predictions on flow patterns, wall shear stresses, and pulse wave propagation. However, their success heavily relies on tedious pre-processing and calibration procedures that typically induce a significant computational cost, thus hampering their clinical applicability. In this work we put forth a machine learning framework that enables the seamless synthesis of non-invasive in-vivo measurement techniques and computational flow dynamics models derived from first physical principles. We illustrate this new paradigm by showing how one-dimensional models of pulsatile flow can be used to constrain the output of deep neural networks such that their predictions satisfy the conservation of mass and momentum principles. Once trained on noisy and scattered clinical data of flow and wall displacement, these networks can return physically consistent predictions for velocity, pressure and wall displacement pulse wave propagation, all without the need to employ conventional simulators. A simple post-processing of these outputs can also provide a cheap and effective way for estimating Windkessel model parameters that are required for the calibration of traditional computational models. The effectiveness of the proposed techniques is demonstrated through a series of prototype benchmarks, as well as a realistic clinical case involving in-vivo measurements near the aorta/carotid bifurcation of a healthy human subject.

    05/13/2019 ∙ by Georgios Kissas, et al. ∙ 0 share

    read it