Manolis Savva

is this you? claim profile

0 followers

Ph.D. Student at Stanford University since 2010 (active research in Computer Graphics), Course Assistant at Stanford University 2011, Teaching Assistant at Cornell University (Cornell University's Introduction to Computer Graphics (CS 4620, Fall 2009) and Introduction to Scientific Computing (CS 3220, Spring 2010) from 2009-2010, Research Assistant at Cornell University, Program of Computer Graphics from 2009-2010, Research Assistant at Cornell University from 2007-2008.

  • Habitat: A Platform for Embodied AI Research

    We present Habitat, a new platform for research in embodied artificial intelligence (AI). Habitat enables training embodied agents (virtual robots) in highly efficient photorealistic 3D simulation, before transferring the learned skills to reality. Specifically, Habitat consists of the following: 1. Habitat-Sim: a flexible, high-performance 3D simulator with configurable agents, multiple sensors, and generic 3D dataset handling (with built-in support for SUNCG, Matterport3D, Gibson datasets). Habitat-Sim is fast -- when rendering a scene from the Matterport3D dataset, Habitat-Sim achieves several thousand frames per second (fps) running single-threaded, and can reach over 10,000 fps multi-process on a single GPU, which is orders of magnitude faster than the closest simulator. 2. Habitat-API: a modular high-level library for end-to-end development of embodied AI algorithms -- defining embodied AI tasks (e.g. navigation, instruction following, question answering), configuring and training embodied agents (via imitation or reinforcement learning, or via classic SLAM), and benchmarking using standard metrics. These large-scale engineering contributions enable us to answer scientific questions requiring experiments that were till now impracticable or `merely' impractical. Specifically, in the context of point-goal navigation (1) we revisit the comparison between learning and SLAM approaches from two recent works and find evidence for the opposite conclusion -- that learning outperforms SLAM, if scaled to total experience far surpassing that of previous investigations, and (2) we conduct the first cross-dataset generalization experiments train, test x Matterport3D, Gibson for multiple sensors blind, RGB, RGBD, D and find that only agents with depth (D) sensors generalize across datasets. We hope that our open-source platform and these findings will advance research in embodied AI.

    04/02/2019 ∙ by Manolis Savva, et al. ∙ 58 share

    read it

  • Hierarchy Denoising Recursive Autoencoders for 3D Scene Layout Prediction

    Indoor scenes exhibit rich hierarchical structure in 3D object layouts. Many tasks in 3D scene understanding can benefit from reasoning jointly about the hierarchical context of a scene, and the identities of objects. We present a variational denoising recursive autoencoder (VDRAE) that generates and iteratively refines a hierarchical representation of 3D object layouts, interleaving bottom-up encoding for context aggregation and top-down decoding for propagation. We train our VDRAE on large-scale 3D scene datasets to predict both instance-level segmentations and a 3D object detections from an over-segmentation of an input point cloud. We show that our VDRAE improves object detection performance on real-world 3D point cloud datasets compared to baselines from prior work.

    03/09/2019 ∙ by Yifei Shi, et al. ∙ 22 share

    read it

  • Scan2CAD: Learning CAD Model Alignment in RGB-D Scans

    We present Scan2CAD, a novel data-driven method that learns to align clean 3D CAD models from a shape database to the noisy and incomplete geometry of a commodity RGB-D scan. For a 3D reconstruction of an indoor scene, our method takes as input a set of CAD models, and predicts a 9DoF pose that aligns each model to the underlying scan geometry. To tackle this problem, we create a new scan-to-CAD alignment dataset based on 1506 ScanNet scans with 97607 annotated keypoint pairs between 14225 CAD models from ShapeNet and their counterpart objects in the scans. Our method selects a set of representative keypoints in a 3D scan for which we find correspondences to the CAD geometry. To this end, we design a novel 3D CNN architecture that learns a joint embedding between real and synthetic objects, and from this predicts a correspondence heatmap. Based on these correspondence heatmaps, we formulate a variational energy minimization that aligns a given set of CAD models to the reconstruction. We evaluate our approach on our newly introduced Scan2CAD benchmark where we outperform both handcrafted feature descriptor as well as state-of-the-art CNN based methods by 21.39

    11/27/2018 ∙ by Armen Avetisyan, et al. ∙ 8 share

    read it

  • Text2Shape: Generating Shapes from Natural Language by Learning Joint Embeddings

    We present a method for generating colored 3D shapes from natural language. To this end, we first learn joint embeddings of freeform text descriptions and colored 3D shapes. Our model combines and extends learning by association and metric learning approaches to learn implicit cross-modal connections, and produces a joint representation that captures the many-to-many relations between language and physical properties of 3D shapes such as color and shape. To evaluate our approach, we collect a large dataset of natural language descriptions for physical 3D objects in the ShapeNet dataset. With this learned joint embedding we demonstrate text-to-shape retrieval that outperforms baseline approaches. Using our embeddings with a novel conditional Wasserstein GAN framework, we generate colored 3D shapes from text. Our method is the first to connect natural language text with realistic 3D objects exhibiting rich variations in color, texture, and shape detail. See video at https://youtu.be/zraPvRdl13Q

    03/22/2018 ∙ by Kevin Chen, et al. ∙ 4 share

    read it

  • The Replica Dataset: A Digital Replica of Indoor Spaces

    We introduce Replica, a dataset of 18 highly photo-realistic 3D indoor scene reconstructions at room and building scale. Each scene consists of a dense mesh, high-resolution high-dynamic-range (HDR) textures, per-primitive semantic class and instance information, and planar mirror and glass reflectors. The goal of Replica is to enable machine learning (ML) research that relies on visually, geometrically, and semantically realistic generative models of the world - for instance, egocentric computer vision, semantic segmentation in 2D and 3D, geometric inference, and the development of embodied agents (virtual robots) performing navigation, instruction following, and question answering. Due to the high level of realism of the renderings from Replica, there is hope that ML systems trained on Replica may transfer directly to real world image and video data. Together with the data, we are releasing a minimal C++ SDK as a starting point for working with the Replica dataset. In addition, Replica is `Habitat-compatible', i.e. can be natively used with AI Habitat for training and testing embodied agents.

    06/13/2019 ∙ by Julian Straub, et al. ∙ 4 share

    read it

  • Large-Scale 3D Shape Reconstruction and Segmentation from ShapeNet Core55

    We introduce a large-scale 3D shape understanding benchmark using data and annotation from ShapeNet 3D object database. The benchmark consists of two tasks: part-level segmentation of 3D shapes and 3D reconstruction from single view images. Ten teams have participated in the challenge and the best performing teams have outperformed state-of-the-art approaches on both tasks. A few novel deep learning architectures have been proposed on various 3D representations on both tasks. We report the techniques used by each team and the corresponding performances. In addition, we summarize the major discoveries from the reported results and possible trends for the future work in the field.

    10/17/2017 ∙ by Li Yi, et al. ∙ 0 share

    read it

  • Matterport3D: Learning from RGB-D Data in Indoor Environments

    Access to large, diverse RGB-D datasets is critical for training RGB-D scene understanding algorithms. However, existing datasets still cover only a limited number of views or a restricted scale of spaces. In this paper, we introduce Matterport3D, a large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale scenes. Annotations are provided with surface reconstructions, camera poses, and 2D and 3D semantic segmentations. The precise global alignment and comprehensive, diverse panoramic set of views over entire buildings enable a variety of supervised and self-supervised computer vision tasks, including keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and region classification.

    09/18/2017 ∙ by Angel Chang, et al. ∙ 0 share

    read it

  • Learning Where to Look: Data-Driven Viewpoint Set Selection for 3D Scenes

    The use of rendered images, whether from completely synthetic datasets or from 3D reconstructions, is increasingly prevalent in vision tasks. However, little attention has been given to how the selection of viewpoints affects the performance of rendered training sets. In this paper, we propose a data-driven approach to view set selection. Given a set of example images, we extract statistics describing their contents and generate a set of views matching the distribution of those statistics. Motivated by semantic segmentation tasks, we model the spatial distribution of each semantic object category within an image view volume. We provide a search algorithm that generates a sampling of likely candidate views according to the example distribution, and a set selection algorithm that chooses a subset of the candidates that jointly cover the example distribution. Results of experiments with these algorithms on SUNCG indicate that they are indeed able to produce view distributions similar to an example set from NYUDv2 according to the earth mover's distance. Furthermore, the selected views improve performance on semantic segmentation compared to alternative view selection algorithms.

    04/07/2017 ∙ by Kyle Genova, et al. ∙ 0 share

    read it

  • Physically-Based Rendering for Indoor Scene Understanding Using Convolutional Neural Networks

    Indoor scene understanding is central to applications such as robot navigation and human companion assistance. Over the last years, data-driven deep neural networks have outperformed many traditional approaches thanks to their representation learning capabilities. One of the bottlenecks in training for better representations is the amount of available per-pixel ground truth data that is required for core scene understanding tasks such as semantic segmentation, normal prediction, and object edge detection. To address this problem, a number of works proposed using synthetic data. However, a systematic study of how such synthetic data is generated is missing. In this work, we introduce a large-scale synthetic dataset with 400K physically-based rendered images from 45K realistic 3D indoor scenes. We study the effects of rendering methods and scene lighting on training for three computer vision tasks: surface normal prediction, semantic segmentation, and object boundary detection. This study provides insights into the best practices for training with synthetic data (more realistic rendering is worth it) and shows that pretraining with our new synthetic dataset can improve results beyond the current state of the art on all three tasks.

    12/22/2016 ∙ by Yinda Zhang, et al. ∙ 0 share

    read it

  • Semantic Scene Completion from a Single Depth Image

    This paper focuses on semantic scene completion, a task for producing a complete 3D voxel representation of volumetric occupancy and semantic labels for a scene from a single-view depth map observation. Previous work has considered scene completion and semantic labeling of depth maps separately. However, we observe that these two problems are tightly intertwined. To leverage the coupled nature of these two tasks, we introduce the semantic scene completion network (SSCNet), an end-to-end 3D convolutional network that takes a single depth image as input and simultaneously outputs occupancy and semantic labels for all voxels in the camera view frustum. Our network uses a dilation-based 3D context module to efficiently expand the receptive field and enable 3D context learning. To train our network, we construct SUNCG - a manually created large-scale dataset of synthetic 3D scenes with dense volumetric annotations. Our experiments demonstrate that the joint model outperforms methods addressing each task in isolation and outperforms alternative approaches on the semantic scene completion task.

    11/28/2016 ∙ by Shuran Song, et al. ∙ 0 share

    read it

  • ShapeNet: An Information-Rich 3D Model Repository

    We present ShapeNet: a richly-annotated, large-scale repository of shapes represented by 3D CAD models of objects. ShapeNet contains 3D models from a multitude of semantic categories and organizes them under the WordNet taxonomy. It is a collection of datasets providing many semantic annotations for each 3D model such as consistent rigid alignments, parts and bilateral symmetry planes, physical sizes, keywords, as well as other planned annotations. Annotations are made available through a public web-based interface to enable data visualization of object attributes, promote data-driven geometric analysis, and provide a large-scale quantitative benchmark for research in computer graphics and vision. At the time of this technical report, ShapeNet has indexed more than 3,000,000 models, 220,000 models out of which are classified into 3,135 categories (WordNet synsets). In this report we describe the ShapeNet effort as a whole, provide details for all currently available datasets, and summarize future plans.

    12/09/2015 ∙ by Angel X. Chang, et al. ∙ 0 share

    read it