Kaiyu Yang

is this you? claim profile


  • Learning to Prove Theorems via Interacting with Proof Assistants

    Humans prove theorems by relying on substantial high-level reasoning and problem-specific insights. Proof assistants offer a formalism that resembles human mathematical reasoning, representing theorems in higher-order logic and proofs as high-level tactics. However, human experts have to construct proofs manually by entering tactics into the proof assistant. In this paper, we study the problem of using machine learning to automate the interaction with proof assistants. We construct CoqGym, a large-scale dataset and learning environment containing 71K human-written proofs from 123 projects developed with the Coq proof assistant. We develop ASTactic, a deep learning-based model that generates tactics as programs in the form of abstract syntax trees (ASTs). Experiments show that ASTactic trained on CoqGym can generate effective tactics and can be used to prove new theorems not previously provable by automated methods. Code is available at https://github.com/princeton-vl/CoqGym.

    05/21/2019 ∙ by Kaiyu Yang, et al. ∙ 32 share

    read it

  • Stacked Hourglass Networks for Human Pose Estimation

    This work introduces a novel convolutional network architecture for the task of human pose estimation. Features are processed across all scales and consolidated to best capture the various spatial relationships associated with the body. We show how repeated bottom-up, top-down processing used in conjunction with intermediate supervision is critical to improving the performance of the network. We refer to the architecture as a "stacked hourglass" network based on the successive steps of pooling and upsampling that are done to produce a final set of predictions. State-of-the-art results are achieved on the FLIC and MPII benchmarks outcompeting all recent methods.

    03/22/2016 ∙ by Alejandro Newell, et al. ∙ 0 share

    read it