Jongchan Park

is this you? claim profile

0

  • Distort-and-Recover: Color Enhancement using Deep Reinforcement Learning

    Learning-based color enhancement approaches typically learn to map from input images to retouched images. Most of existing methods require expensive pairs of input-retouched images or produce results in a non-interpretable way. In this paper, we present a deep reinforcement learning (DRL) based method for color enhancement to explicitly model the step-wise nature of human retouching process. We cast a color enhancement process as a Markov Decision Process where actions are defined as global color adjustment operations. Then we train our agent to learn the optimal global enhancement sequence of the actions. In addition, we present a 'distort-and-recover' training scheme which only requires high-quality reference images for training instead of input and retouched image pairs. Given high-quality reference images, we distort the images' color distribution and form distorted-reference image pairs for training. Through extensive experiments, we show that our method produces decent enhancement results and our DRL approach is more suitable for the 'distort-and-recover' training scheme than previous supervised approaches. Supplementary material and code are available at https://sites.google.com/view/distort-and-recover/

    04/12/2018 ∙ by Jongchan Park, et al. ∙ 0 share

    read it

  • CBAM: Convolutional Block Attention Module

    We propose Convolutional Block Attention Module (CBAM), a simple yet effective attention module for feed-forward convolutional neural networks. Given an intermediate feature map, our module sequentially infers attention maps along two separate dimensions, channel and spatial, then the attention maps are multiplied to the input feature map for adaptive feature refinement. Because CBAM is a lightweight and general module, it can be integrated into any CNN architectures seamlessly with negligible overheads and is end-to-end trainable along with base CNNs. We validate our CBAM through extensive experiments on ImageNet-1K, MS COCO detection, and VOC 2007 detection datasets. Our experiments show consistent improvements in classification and detection performances with various models, demonstrating the wide applicability of CBAM. The code and models will be publicly available.

    07/17/2018 ∙ by Sanghyun Woo, et al. ∙ 0 share

    read it

  • BAM: Bottleneck Attention Module

    Recent advances in deep neural networks have been developed via architecture search for stronger representational power. In this work, we focus on the effect of attention in general deep neural networks. We propose a simple and effective attention module, named Bottleneck Attention Module (BAM), that can be integrated with any feed-forward convolutional neural networks. Our module infers an attention map along two separate pathways, channel and spatial. We place our module at each bottleneck of models where the downsampling of feature maps occurs. Our module constructs a hierarchical attention at bottlenecks with a number of parameters and it is trainable in an end-to-end manner jointly with any feed-forward models. We validate our BAM through extensive experiments on CIFAR-100, ImageNet-1K, VOC 2007 and MS COCO benchmarks. Our experiments show consistent improvement in classification and detection performances with various models, demonstrating the wide applicability of BAM. The code and models will be publicly available.

    07/17/2018 ∙ by Jongchan Park, et al. ∙ 0 share

    read it