Jean Hilger

is this you? claim profile

0

  • PHom-GeM: Persistent Homology for Generative Models

    Generative neural network models, including Generative Adversarial Network (GAN) and Auto-Encoders (AE), are among the most popular neural network models to generate adversarial data. The GAN model is composed of a generator that produces synthetic data and of a discriminator that discriminates between the generator's output and the true data. AE consist of an encoder which maps the model distribution to a latent manifold and of a decoder which maps the latent manifold to a reconstructed distribution. However, generative models are known to provoke chaotically scattered reconstructed distribution during their training, and consequently, incomplete generated adversarial distributions. Current distance measures fail to address this problem because they are not able to acknowledge the shape of the data manifold, i.e. its topological features, and the scale at which the manifold should be analyzed. We propose Persistent Homology for Generative Models, PHom-GeM, a new methodology to assess and measure the distribution of a generative model. PHom-GeM minimizes an objective function between the true and the reconstructed distributions and uses persistent homology, the study of the topological features of a space at different spatial resolutions, to compare the nature of the true and the generated distributions. Our experiments underline the potential of persistent homology for Wasserstein GAN in comparison to Wasserstein AE and Variational AE. The experiments are conducted on a real-world data set particularly challenging for traditional distance measures and generative neural network models. PHom-GeM is the first methodology to propose a topological distance measure, the bottleneck distance, for generative models used to compare adversarial samples in the context of credit card transactions.

    05/23/2019 ∙ by Jeremy Charlier, et al. ∙ 0 share

    read it

  • User-Device Authentication in Mobile Banking using APHEN for Paratuck2 Tensor Decomposition

    The new financial European regulations such as PSD2 are changing the retail banking services. Noticeably, the monitoring of the personal expenses is now opened to other institutions than retail banks. Nonetheless, the retail banks are looking to leverage the user-device authentication on the mobile banking applications to enhance the personal financial advertisement. To address the profiling of the authentication, we rely on tensor decomposition, a higher dimensional analogue of matrix decomposition. We use Paratuck2, which expresses a tensor as a multiplication of matrices and diagonal tensors, because of the imbalance between the number of users and devices. We highlight why Paratuck2 is more appropriate in this case than the popular CP tensor decomposition, which decomposes a tensor as a sum of rank-one tensors. However, the computation of Paratuck2 is computational intensive. We propose a new APproximate HEssian-based Newton resolution algorithm, APHEN, capable of solving Paratuck2 more accurately and faster than the other popular approaches based on alternating least square or gradient descent. The results of Paratuck2 are used for the predictions of users' authentication with neural networks. We apply our method for the concrete case of targeting clients for financial advertising campaigns based on the authentication events generated by mobile banking applications.

    05/23/2019 ∙ by Jeremy Charlier, et al. ∙ 0 share

    read it

  • Non-Negative PARATUCK2 Tensor Decomposition Combined to LSTM Network For Smart Contracts Profiling

    Smart contracts are programs stored and executed on a blockchain. The Ethereum platform, an open-source blockchain-based platform, has been designed to use these programs offering secured protocols and transaction costs reduction. The Ethereum Virtual Machine performs smart contracts runs, where the execution of each contract is limited to the amount of gas required to execute the operations described in the code. Each gas unit must be paid using Ether, the crypto-currency of the platform. Due to smart contracts interactions evolving over time, analyzing the behavior of smart contracts is very challenging. We address this challenge in our paper. We develop for this purpose an innovative approach based on the non-negative tensor decomposition PARATUCK2 combined with long short-term memory (LSTM) to assess if predictive analysis can forecast smart contracts interactions over time. To validate our methodology, we report results for two use cases. The main use case is related to analyzing smart contracts and allows shedding some light into the complex interactions among smart contracts. In order to show the generality of our method on other use cases, we also report its performance on video on demand recommendation.

    05/23/2019 ∙ by Jeremy Charlier, et al. ∙ 0 share

    read it

  • Modeling Smart Contracts Activities: A Tensor Based Approach

    Smart contracts are autonomous software executing predefined conditions. Two of the biggest advantages of the smart contracts are secured protocols and transaction costs reduction. On the Ethereum platform, an open-source blockchain-based platform, smart contracts implement a distributed virtual machine on the distributed ledger. To avoid denial of service attacks and monetize the services, payment transactions are executed whenever code is being executed between contracts. It is thus natural to investigate if predictive analysis is capable to forecast these interactions. We have addressed this issue and propose an innovative application of the tensor decomposition CANDECOMP/PARAFAC to the temporal link prediction of smart contracts. We introduce a new approach leveraging stochastic processes for series predictions based on the tensor decomposition that can be used for smart contracts predictive analytics.

    05/23/2019 ∙ by Jeremy Charlier, et al. ∙ 0 share

    read it