Jane X Wang

is this you? claim profile

0

  • Meta-learning of Sequential Strategies

    In this report we review memory-based meta-learning as a tool for building sample-efficient strategies that learn from past experience to adapt to any task within a target class. Our goal is to equip the reader with the conceptual foundations of this tool for building new, scalable agents that operate on broad domains. To do so, we present basic algorithmic templates for building near-optimal predictors and reinforcement learners which behave as if they had a probabilistic model that allowed them to efficiently exploit task structure. Furthermore, we recast memory-based meta-learning within a Bayesian framework, showing that the meta-learned strategies are near-optimal because they amortize Bayes-filtered data, where the adaptation is implemented in the memory dynamics as a state-machine of sufficient statistics. Essentially, memory-based meta-learning translates the hard problem of probabilistic sequential inference into a regression problem.

    05/08/2019 ∙ by Pedro A. Ortega, et al. ∙ 16 share

    read it

  • Learning to reinforcement learn

    In recent years deep reinforcement learning (RL) systems have attained superhuman performance in a number of challenging task domains. However, a major limitation of such applications is their demand for massive amounts of training data. A critical present objective is thus to develop deep RL methods that can adapt rapidly to new tasks. In the present work we introduce a novel approach to this challenge, which we refer to as deep meta-reinforcement learning. Previous work has shown that recurrent networks can support meta-learning in a fully supervised context. We extend this approach to the RL setting. What emerges is a system that is trained using one RL algorithm, but whose recurrent dynamics implement a second, quite separate RL procedure. This second, learned RL algorithm can differ from the original one in arbitrary ways. Importantly, because it is learned, it is configured to exploit structure in the training domain. We unpack these points in a series of seven proof-of-concept experiments, each of which examines a key aspect of deep meta-RL. We consider prospects for extending and scaling up the approach, and also point out some potentially important implications for neuroscience.

    11/17/2016 ∙ by Jane X Wang, et al. ∙ 0 share

    read it

  • A high-reproducibility and high-accuracy method for automated topic classification

    Much of human knowledge sits in large databases of unstructured text. Leveraging this knowledge requires algorithms that extract and record metadata on unstructured text documents. Assigning topics to documents will enable intelligent search, statistical characterization, and meaningful classification. Latent Dirichlet allocation (LDA) is the state-of-the-art in topic classification. Here, we perform a systematic theoretical and numerical analysis that demonstrates that current optimization techniques for LDA often yield results which are not accurate in inferring the most suitable model parameters. Adapting approaches for community detection in networks, we propose a new algorithm which displays high-reproducibility and high-accuracy, and also has high computational efficiency. We apply it to a large set of documents in the English Wikipedia and reveal its hierarchical structure. Our algorithm promises to make "big data" text analysis systems more reliable.

    02/03/2014 ∙ by Andrea Lancichinetti, et al. ∙ 0 share

    read it

  • Been There, Done That: Meta-Learning with Episodic Recall

    Meta-learning agents excel at rapidly learning new tasks from open-ended task distributions; yet, they forget what they learn about each task as soon as the next begins. When tasks reoccur - as they do in natural environments - metalearning agents must explore again instead of immediately exploiting previously discovered solutions. We propose a formalism for generating open-ended yet repetitious environments, then develop a meta-learning architecture for solving these environments. This architecture melds the standard LSTM working memory with a differentiable neural episodic memory. We explore the capabilities of agents with this episodic LSTM in five meta-learning environments with reoccurring tasks, ranging from bandits to navigation and stochastic sequential decision problems.

    05/24/2018 ∙ by Samuel Ritter, et al. ∙ 0 share

    read it

  • Evolving intrinsic motivations for altruistic behavior

    Multi-agent cooperation is an important feature of the natural world. Many tasks involve individual incentives that are misaligned with the common good, yet a wide range of organisms from bacteria to insects and humans are able to overcome their differences and collaborate. Therefore, the emergence of cooperative behavior amongst self-interested individuals is an important question for the fields of multi-agent reinforcement learning (MARL) and evolutionary theory. Here, we study a particular class of multi-agent problems called intertemporal social dilemmas (ISDs), where the conflict between the individual and the group is particularly sharp. By combining MARL with appropriately structured natural selection, we demonstrate that individual inductive biases for cooperation can be learned in a model-free way. To achieve this, we introduce an innovative modular architecture for deep reinforcement learning agents which supports multi-level selection. We present results in two challenging environments, and interpret these in the context of cultural and ecological evolution.

    11/14/2018 ∙ by Jane X Wang, et al. ∙ 0 share

    read it