James Requeima

is this you? claim profile

0

  • Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes

    The goal of this paper is to design image classification systems that, after an initial multi-task training phase, can automatically adapt to new tasks encountered at test time. We introduce a conditional neural process based approach to the multi-task classification setting for this purpose, and establish connections to the meta-learning and few-shot learning literature. The resulting approach, called CNAPs, comprises a classifier whose parameters are modulated by an adaptation network that takes the current task's dataset as input. We demonstrate that CNAPs achieves state-of-the-art results on the challenging Meta-Dataset benchmark indicating high-quality transfer-learning. We show that the approach is robust, avoiding both over-fitting in low-shot regimes and under-fitting in high-shot regimes. Timing experiments reveal that CNAPs is computationally efficient at test-time as it does not involve gradient based adaptation. Finally, we show that trained models are immediately deployable to continual learning and active learning where they can outperform existing approaches that do not leverage transfer learning.

    06/18/2019 ∙ by James Requeima, et al. ∙ 5 share

    read it

  • Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space

    Chemical space is so large that brute force searches for new interesting molecules are infeasible. High-throughput virtual screening via computer cluster simulations can speed up the discovery process by collecting very large amounts of data in parallel, e.g., up to hundreds or thousands of parallel measurements. Bayesian optimization (BO) can produce additional acceleration by sequentially identifying the most useful simulations or experiments to be performed next. However, current BO methods cannot scale to the large numbers of parallel measurements and the massive libraries of molecules currently used in high-throughput screening. Here, we propose a scalable solution based on a parallel and distributed implementation of Thompson sampling (PDTS). We show that, in small scale problems, PDTS performs similarly as parallel expected improvement (EI), a batch version of the most widely used BO heuristic. Additionally, in settings where parallel EI does not scale, PDTS outperforms other scalable baselines such as a greedy search, ϵ-greedy approaches and a random search method. These results show that PDTS is a successful solution for large-scale parallel BO.

    06/06/2017 ∙ by José Miguel Hernández-Lobato, et al. ∙ 0 share

    read it

  • The Gaussian Process Autoregressive Regression Model (GPAR)

    Multi-output regression models must exploit dependencies between outputs to maximise predictive performance. The application of Gaussian processes (GPs) to this setting typically yields models that are computationally demanding and have limited representational power. We present the Gaussian Process Autoregressive Regression (GPAR) model, a scalable multi-output GP model that is able to capture nonlinear, possibly input-varying, dependencies between outputs in a simple and tractable way: the product rule is used to decompose the joint distribution over the outputs into a set of conditionals, each of which is modelled by a standard GP. GPAR's efficacy is demonstrated on a variety of synthetic and real-world problems, outperforming existing GP models and achieving state-of-the-art performance on the tasks with existing benchmarks.

    02/20/2018 ∙ by James Requeima, et al. ∙ 0 share

    read it