Georgia Gkioxari

is this you? claim profile


Research Scientist at FAIR

  • Embodied Question Answering in Photorealistic Environments with Point Cloud Perception

    To help bridge the gap between internet vision-style problems and the goal of vision for embodied perception we instantiate a large-scale navigation task -- Embodied Question Answering [1] in photo-realistic environments (Matterport 3D). We thoroughly study navigation policies that utilize 3D point clouds, RGB images, or their combination. Our analysis of these models reveals several key findings. We find that two seemingly naive navigation baselines, forward-only and random, are strong navigators and challenging to outperform, due to the specific choice of the evaluation setting presented by [1]. We find a novel loss-weighting scheme we call Inflection Weighting to be important when training recurrent models for navigation with behavior cloning and are able to out perform the baselines with this technique. We find that point clouds provide a richer signal than RGB images for learning obstacle avoidance, motivating the use (and continued study) of 3D deep learning models for embodied navigation.

    04/06/2019 ∙ by Erik Wijmans, et al. ∙ 12 share

    read it

  • Neural Modular Control for Embodied Question Answering

    We present a modular approach for learning policies for navigation over long planning horizons from language input. Our hierarchical policy operates at multiple timescales, where the higher-level master policy proposes subgoals to be executed by specialized sub-policies. Our choice of subgoals is compositional and semantic, i.e. they can be sequentially combined in arbitrary orderings, and assume human-interpretable descriptions (e.g. 'exit room', 'find kitchen', 'find refrigerator', etc.). We use imitation learning to warm-start policies at each level of the hierarchy, dramatically increasing sample efficiency, followed by reinforcement learning. Independent reinforcement learning at each level of hierarchy enables sub-policies to adapt to consequences of their actions and recover from errors. Subsequent joint hierarchical training enables the master policy to adapt to the sub-policies.

    10/26/2018 ∙ by Abhishek Das, et al. ∙ 6 share

    read it

  • Multi-Target Embodied Question Answering

    Embodied Question Answering (EQA) is a relatively new task where an agent is asked to answer questions about its environment from egocentric perception. EQA makes the fundamental assumption that every question, e.g., "what color is the car?", has exactly one target ("car") being inquired about. This assumption puts a direct limitation on the abilities of the agent. We present a generalization of EQA - Multi-Target EQA (MT-EQA). Specifically, we study questions that have multiple targets in them, such as "Is the dresser in the bedroom bigger than the oven in the kitchen?", where the agent has to navigate to multiple locations ("dresser in bedroom", "oven in kitchen") and perform comparative reasoning ("dresser" bigger than "oven") before it can answer a question. Such questions require the development of entirely new modules or components in the agent. To address this, we propose a modular architecture composed of a program generator, a controller, a navigator, and a VQA module. The program generator converts the given question into sequential executable sub-programs; the navigator guides the agent to multiple locations pertinent to the navigation-related sub-programs; and the controller learns to select relevant observations along its path. These observations are then fed to the VQA module to predict the answer. We perform detailed analysis for each of the model components and show that our joint model can outperform previous methods and strong baselines by a significant margin.

    04/09/2019 ∙ by Licheng Yu, et al. ∙ 6 share

    read it

  • Mesh R-CNN

    Rapid advances in 2D perception have led to systems that accurately detect objects in real-world images. However, these systems make predictions in 2D, ignoring the 3D structure of the world. Concurrently, advances in 3D shape prediction have mostly focused on synthetic benchmarks and isolated objects. We unify advances in these two areas. We propose a system that detects objects in real-world images and produces a triangle mesh giving the full 3D shape of each detected object. Our system, called Mesh R-CNN, augments Mask R-CNN with a mesh prediction branch that outputs meshes with varying topological structure by first predicting coarse voxel representations which are converted to meshes and refined with a graph convolution network operating over the mesh's vertices and edges. We validate our mesh prediction branch on ShapeNet, where we outperform prior work on single-image shape prediction. We then deploy our full Mesh R-CNN system on Pix3D, where we jointly detect objects and predict their 3D shapes.

    06/06/2019 ∙ by Georgia Gkioxari, et al. ∙ 5 share

    read it

  • Learning and Planning with a Semantic Model

    Building deep reinforcement learning agents that can generalize and adapt to unseen environments remains a fundamental challenge for AI. This paper describes progresses on this challenge in the context of man-made environments, which are visually diverse but contain intrinsic semantic regularities. We propose a hybrid model-based and model-free approach, LEArning and Planning with Semantics (LEAPS), consisting of a multi-target sub-policy that acts on visual inputs, and a Bayesian model over semantic structures. When placed in an unseen environment, the agent plans with the semantic model to make high-level decisions, proposes the next sub-target for the sub-policy to execute, and updates the semantic model based on new observations. We perform experiments in visual navigation tasks using House3D, a 3D environment that contains diverse human-designed indoor scenes with real-world objects. LEAPS outperforms strong baselines that do not explicitly plan using the semantic content.

    09/28/2018 ∙ by Yi Wu, et al. ∙ 4 share

    read it

  • Chained Predictions Using Convolutional Neural Networks

    In this paper, we present an adaptation of the sequence-to-sequence model for structured output prediction in vision tasks. In this model the output variables for a given input are predicted sequentially using neural networks. The prediction for each output variable depends not only on the input but also on the previously predicted output variables. The model is applied to spatial localization tasks and uses convolutional neural networks (CNNs) for processing input images and a multi-scale deconvolutional architecture for making spatial predictions at each time step. We explore the impact of weight sharing with a recurrent connection matrix between consecutive predictions, and compare it to a formulation where these weights are not tied. Untied weights are particularly suited for problems with a fixed sized structure, where different classes of output are predicted in different steps. We show that chained predictions achieve top performing results on human pose estimation from single images and videos.

    05/08/2016 ∙ by Georgia Gkioxari, et al. ∙ 0 share

    read it

  • Mask R-CNN

    We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without tricks, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code will be made available.

    03/20/2017 ∙ by Kaiming He, et al. ∙ 0 share

    read it

  • Contextual Action Recognition with R*CNN

    There are multiple cues in an image which reveal what action a person is performing. For example, a jogger has a pose that is characteristic for jogging, but the scene (e.g. road, trail) and the presence of other joggers can be an additional source of information. In this work, we exploit the simple observation that actions are accompanied by contextual cues to build a strong action recognition system. We adapt RCNN to use more than one region for classification while still maintaining the ability to localize the action. We call our system R*CNN. The action-specific models and the feature maps are trained jointly, allowing for action specific representations to emerge. R*CNN achieves 90.2 approaches in the field by a significant margin. Last, we show that R*CNN is not limited to action recognition. In particular, R*CNN can also be used to tackle fine-grained tasks such as attribute classification. We validate this claim by reporting state-of-the-art performance on the Berkeley Attributes of People dataset.

    05/05/2015 ∙ by Georgia Gkioxari, et al. ∙ 0 share

    read it

  • Actions and Attributes from Wholes and Parts

    We investigate the importance of parts for the tasks of action and attribute classification. We develop a part-based approach by leveraging convolutional network features inspired by recent advances in computer vision. Our part detectors are a deep version of poselets and capture parts of the human body under a distinct set of poses. For the tasks of action and attribute classification, we train holistic convolutional neural networks and show that adding parts leads to top-performing results for both tasks. In addition, we demonstrate the effectiveness of our approach when we replace an oracle person detector, as is the default in the current evaluation protocol for both tasks, with a state-of-the-art person detection system.

    12/08/2014 ∙ by Georgia Gkioxari, et al. ∙ 0 share

    read it

  • Finding Action Tubes

    We address the problem of action detection in videos. Driven by the latest progress in object detection from 2D images, we build action models using rich feature hierarchies derived from shape and kinematic cues. We incorporate appearance and motion in two ways. First, starting from image region proposals we select those that are motion salient and thus are more likely to contain the action. This leads to a significant reduction in the number of regions being processed and allows for faster computations. Second, we extract spatio-temporal feature representations to build strong classifiers using Convolutional Neural Networks. We link our predictions to produce detections consistent in time, which we call action tubes. We show that our approach outperforms other techniques in the task of action detection.

    11/21/2014 ∙ by Georgia Gkioxari, et al. ∙ 0 share

    read it

  • R-CNNs for Pose Estimation and Action Detection

    We present convolutional neural networks for the tasks of keypoint (pose) prediction and action classification of people in unconstrained images. Our approach involves training an R-CNN detector with loss functions depending on the task being tackled. We evaluate our method on the challenging PASCAL VOC dataset and compare it to previous leading approaches. Our method gives state-of-the-art results for keypoint and action prediction. Additionally, we introduce a new dataset for action detection, the task of simultaneously localizing people and classifying their actions, and present results using our approach.

    06/19/2014 ∙ by Georgia Gkioxari, et al. ∙ 0 share

    read it