Bradly C. Stadie

is this you? claim profile


Statistics Ph.D. Program at University of California, Berkeley, Department of Statistics

  • Third-Person Imitation Learning

    Reinforcement learning (RL) makes it possible to train agents capable of achiev- ing sophisticated goals in complex and uncertain environments. A key difficulty in reinforcement learning is specifying a reward function for the agent to optimize. Traditionally, imitation learning in RL has been used to overcome this problem. Unfortunately, hitherto imitation learning methods tend to require that demonstra- tions are supplied in the first-person: the agent is provided with a sequence of states and a specification of the actions that it should have taken. While powerful, this kind of imitation learning is limited by the relatively hard problem of collect- ing first-person demonstrations. Humans address this problem by learning from third-person demonstrations: they observe other humans perform tasks, infer the task, and accomplish the same task themselves. In this paper, we present a method for unsupervised third-person imitation learn- ing. Here third-person refers to training an agent to correctly achieve a simple goal in a simple environment when it is provided a demonstration of a teacher achieving the same goal but from a different viewpoint; and unsupervised refers to the fact that the agent receives only these third-person demonstrations, and is not provided a correspondence between teacher states and student states. Our methods primary insight is that recent advances from domain confusion can be utilized to yield domain agnostic features which are crucial during the training process. To validate our approach, we report successful experiments on learning from third-person demonstrations in a pointmass domain, a reacher domain, and inverted pendulum.

    03/06/2017 ∙ by Bradly C. Stadie, et al. ∙ 0 share

    read it

  • One-Shot Imitation Learning

    Imitation learning has been commonly applied to solve different tasks in isolation. This usually requires either careful feature engineering, or a significant number of samples. This is far from what we desire: ideally, robots should be able to learn from very few demonstrations of any given task, and instantly generalize to new situations of the same task, without requiring task-specific engineering. In this paper, we propose a meta-learning framework for achieving such capability, which we call one-shot imitation learning. Specifically, we consider the setting where there is a very large set of tasks, and each task has many instantiations. For example, a task could be to stack all blocks on a table into a single tower, another task could be to place all blocks on a table into two-block towers, etc. In each case, different instances of the task would consist of different sets of blocks with different initial states. At training time, our algorithm is presented with pairs of demonstrations for a subset of all tasks. A neural net is trained that takes as input one demonstration and the current state (which initially is the initial state of the other demonstration of the pair), and outputs an action with the goal that the resulting sequence of states and actions matches as closely as possible with the second demonstration. At test time, a demonstration of a single instance of a new task is presented, and the neural net is expected to perform well on new instances of this new task. The use of soft attention allows the model to generalize to conditions and tasks unseen in the training data. We anticipate that by training this model on a much greater variety of tasks and settings, we will obtain a general system that can turn any demonstrations into robust policies that can accomplish an overwhelming variety of tasks. Videos available at .

    03/21/2017 ∙ by Yan Duan, et al. ∙ 0 share

    read it

  • Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models

    Achieving efficient and scalable exploration in complex domains poses a major challenge in reinforcement learning. While Bayesian and PAC-MDP approaches to the exploration problem offer strong formal guarantees, they are often impractical in higher dimensions due to their reliance on enumerating the state-action space. Hence, exploration in complex domains is often performed with simple epsilon-greedy methods. In this paper, we consider the challenging Atari games domain, which requires processing raw pixel inputs and delayed rewards. We evaluate several more sophisticated exploration strategies, including Thompson sampling and Boltzman exploration, and propose a new exploration method based on assigning exploration bonuses from a concurrently learned model of the system dynamics. By parameterizing our learned model with a neural network, we are able to develop a scalable and efficient approach to exploration bonuses that can be applied to tasks with complex, high-dimensional state spaces. In the Atari domain, our method provides the most consistent improvement across a range of games that pose a major challenge for prior methods. In addition to raw game-scores, we also develop an AUC-100 metric for the Atari Learning domain to evaluate the impact of exploration on this benchmark.

    07/03/2015 ∙ by Bradly C. Stadie, et al. ∙ 0 share

    read it

  • Evolved Policy Gradients

    We propose a meta-learning approach for learning gradient-based reinforcement learning (RL) algorithms. The idea is to evolve a differentiable loss function, such that an agent, which optimizes its policy to minimize this loss, will achieve high rewards. The loss is parametrized via temporal convolutions over the agent's experience. Because this loss is highly flexible in its ability to take into account the agent's history, it enables fast task learning and eliminates the need for reward shaping at test time. Empirical results show that our evolved policy gradient algorithm achieves faster learning on several randomized environments compared to an off-the-shelf policy gradient method. Moreover, at test time, our learner optimizes only its learned loss function, and requires no explicit reward signal. In effect, the agent internalizes the reward structure, suggesting a direction toward agents that learn to solve new tasks simply from intrinsic motivation.

    02/13/2018 ∙ by Rein Houthooft, et al. ∙ 0 share

    read it

  • Some Considerations on Learning to Explore via Meta-Reinforcement Learning

    We consider the problem of exploration in meta reinforcement learning. Two new meta reinforcement learning algorithms are suggested: E-MAML and E-RL^2. Results are presented on a novel environment we call `Krazy World' and a set of maze environments. We show E-MAML and E-RL^2 deliver better performance on tasks where exploration is important.

    03/03/2018 ∙ by Bradly C. Stadie, et al. ∙ 0 share

    read it

  • Transfer Learning for Estimating Causal Effects using Neural Networks

    We develop new algorithms for estimating heterogeneous treatment effects, combining recent developments in transfer learning for neural networks with insights from the causal inference literature. By taking advantage of transfer learning, we are able to efficiently use different data sources that are related to the same underlying causal mechanisms. We compare our algorithms with those in the extant literature using extensive simulation studies based on large-scale voter persuasion experiments and the MNIST database. Our methods can perform an order of magnitude better than existing benchmarks while using a fraction of the data.

    08/23/2018 ∙ by Sören R. Künzel, et al. ∙ 0 share

    read it