Andrew Trask

is this you? claim profile

0

  • A generic framework for privacy preserving deep learning

    We detail a new framework for privacy preserving deep learning and discuss its assets. The framework puts a premium on ownership and secure processing of data and introduces a valuable representation based on chains of commands and tensors. This abstraction allows one to implement complex privacy preserving constructs such as Federated Learning, Secure Multiparty Computation, and Differential Privacy while still exposing a familiar deep learning API to the end-user. We report early results on the Boston Housing and Pima Indian Diabetes datasets. While the privacy features apart from Differential Privacy do not impact the prediction accuracy, the current implementation of the framework introduces a significant overhead in performance, which will be addressed at a later stage of the development. We believe this work is an important milestone introducing the first reliable, general framework for privacy preserving deep learning.

    11/09/2018 ∙ by Theo Ryffel, et al. ∙ 12 share

    read it

  • Neural Arithmetic Logic Units

    Neural networks can learn to represent and manipulate numerical information, but they seldom generalize well outside of the range of numerical values encountered during training. To encourage more systematic numerical extrapolation, we propose an architecture that represents numerical quantities as linear activations which are manipulated using primitive arithmetic operators, controlled by learned gates. We call this module a neural arithmetic logic unit (NALU), by analogy to the arithmetic logic unit in traditional processors. Experiments show that NALU-enhanced neural networks can learn to track time, perform arithmetic over images of numbers, translate numerical language into real-valued scalars, execute computer code, and count objects in images. In contrast to conventional architectures, we obtain substantially better generalization both inside and outside of the range of numerical values encountered during training, often extrapolating orders of magnitude beyond trained numerical ranges.

    08/01/2018 ∙ by Andrew Trask, et al. ∙ 6 share

    read it

  • Scaling shared model governance via model splitting

    Currently the only techniques for sharing governance of a deep learning model are homomorphic encryption and secure multiparty computation. Unfortunately, neither of these techniques is applicable to the training of large neural networks due to their large computational and communication overheads. As a scalable technique for shared model governance, we propose splitting deep learning model between multiple parties. This paper empirically investigates the security guarantee of this technique, which is introduced as the problem of model completion: Given the entire training data set or an environment simulator, and a subset of the parameters of a trained deep learning model, how much training is required to recover the model's original performance? We define a metric for evaluating the hardness of the model completion problem and study it empirically in both supervised learning on ImageNet and reinforcement learning on Atari and DeepMind Lab. Our experiments show that (1) the model completion problem is harder in reinforcement learning than in supervised learning because of the unavailability of the trained agent's trajectories, and (2) its hardness depends not primarily on the number of parameters of the missing part, but more so on their type and location. Our results suggest that model splitting might be a feasible technique for shared model governance in some settings where training is very expensive.

    12/14/2018 ∙ by Miljan Martic, et al. ∙ 6 share

    read it

  • Sample Efficient Adaptive Text-to-Speech

    We present a meta-learning approach for adaptive text-to-speech (TTS) with few data. During training, we learn a multi-speaker model using a shared conditional WaveNet core and independent learned embeddings for each speaker. The aim of training is not to produce a neural network with fixed weights, which is then deployed as a TTS system. Instead, the aim is to produce a network that requires few data at deployment time to rapidly adapt to new speakers. We introduce and benchmark three strategies: (i) learning the speaker embedding while keeping the WaveNet core fixed, (ii) fine-tuning the entire architecture with stochastic gradient descent, and (iii) predicting the speaker embedding with a trained neural network encoder. The experiments show that these approaches are successful at adapting the multi-speaker neural network to new speakers, obtaining state-of-the-art results in both sample naturalness and voice similarity with merely a few minutes of audio data from new speakers.

    09/27/2018 ∙ by Yutian Chen, et al. ∙ 2 share

    read it

  • sense2vec - A Fast and Accurate Method for Word Sense Disambiguation In Neural Word Embeddings

    Neural word representations have proven useful in Natural Language Processing (NLP) tasks due to their ability to efficiently model complex semantic and syntactic word relationships. However, most techniques model only one representation per word, despite the fact that a single word can have multiple meanings or "senses". Some techniques model words by using multiple vectors that are clustered based on context. However, recent neural approaches rarely focus on the application to a consuming NLP algorithm. Furthermore, the training process of recent word-sense models is expensive relative to single-sense embedding processes. This paper presents a novel approach which addresses these concerns by modeling multiple embeddings for each word based on supervised disambiguation, which provides a fast and accurate way for a consuming NLP model to select a sense-disambiguated embedding. We demonstrate that these embeddings can disambiguate both contrastive senses such as nominal and verbal senses as well as nuanced senses such as sarcasm. We further evaluate Part-of-Speech disambiguated embeddings on neural dependency parsing, yielding a greater than 8 scores across 6 languages.

    11/19/2015 ∙ by Andrew Trask, et al. ∙ 0 share

    read it