Aidan N. Gomez

is this you? claim profile


  • Learning Sparse Networks Using Targeted Dropout

    Neural networks are easier to optimise when they have many more weights than are required for modelling the mapping from inputs to outputs. This suggests a two-stage learning procedure that first learns a large net and then prunes away connections or hidden units. But standard training does not necessarily encourage nets to be amenable to pruning. We introduce targeted dropout, a method for training a neural network so that it is robust to subsequent pruning. Before computing the gradients for each weight update, targeted dropout stochastically selects a set of units or weights to be dropped using a simple self-reinforcing sparsity criterion and then computes the gradients for the remaining weights. The resulting network is robust to post hoc pruning of weights or units that frequently occur in the dropped sets. The method improves upon more complicated sparsifying regularisers while being simple to implement and easy to tune.

    05/31/2019 ∙ by Aidan N. Gomez, et al. ∙ 26 share

    read it

  • One Model To Learn Them All

    Deep learning yields great results across many fields, from speech recognition, image classification, to translation. But for each problem, getting a deep model to work well involves research into the architecture and a long period of tuning. We present a single model that yields good results on a number of problems spanning multiple domains. In particular, this single model is trained concurrently on ImageNet, multiple translation tasks, image captioning (COCO dataset), a speech recognition corpus, and an English parsing task. Our model architecture incorporates building blocks from multiple domains. It contains convolutional layers, an attention mechanism, and sparsely-gated layers. Each of these computational blocks is crucial for a subset of the tasks we train on. Interestingly, even if a block is not crucial for a task, we observe that adding it never hurts performance and in most cases improves it on all tasks. We also show that tasks with less data benefit largely from joint training with other tasks, while performance on large tasks degrades only slightly if at all.

    06/16/2017 ∙ by Łukasz Kaiser, et al. ∙ 0 share

    read it

  • The Reversible Residual Network: Backpropagation Without Storing Activations

    Deep residual networks (ResNets) have significantly pushed forward the state-of-the-art on image classification, increasing in performance as networks grow both deeper and wider. However, memory consumption becomes a bottleneck, as one needs to store the activations in order to calculate gradients using backpropagation. We present the Reversible Residual Network (RevNet), a variant of ResNets where each layer's activations can be reconstructed exactly from the next layer's. Therefore, the activations for most layers need not be stored in memory during backpropagation. We demonstrate the effectiveness of RevNets on CIFAR-10, CIFAR-100, and ImageNet, establishing nearly identical classification accuracy to equally-sized ResNets, even though the activation storage requirements are independent of depth.

    07/14/2017 ∙ by Aidan N. Gomez, et al. ∙ 0 share

    read it

  • Attention Is All You Need

    The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

    06/12/2017 ∙ by Ashish Vaswani, et al. ∙ 0 share

    read it

  • Depthwise Separable Convolutions for Neural Machine Translation

    Depthwise separable convolutions reduce the number of parameters and computation used in convolutional operations while increasing representational efficiency. They have been shown to be successful in image classification models, both in obtaining better models than previously possible for a given parameter count (the Xception architecture) and considerably reducing the number of parameters required to perform at a given level (the MobileNets family of architectures). Recently, convolutional sequence-to-sequence networks have been applied to machine translation tasks with good results. In this work, we study how depthwise separable convolutions can be applied to neural machine translation. We introduce a new architecture inspired by Xception and ByteNet, called SliceNet, which enables a significant reduction of the parameter count and amount of computation needed to obtain results like ByteNet, and, with a similar parameter count, achieves new state-of-the-art results. In addition to showing that depthwise separable convolutions perform well for machine translation, we investigate the architectural changes that they enable: we observe that thanks to depthwise separability, we can increase the length of convolution windows, removing the need for filter dilation. We also introduce a new "super-separable" convolution operation that further reduces the number of parameters and computational cost for obtaining state-of-the-art results.

    06/09/2017 ∙ by Łukasz Kaiser, et al. ∙ 0 share

    read it

  • Unsupervised Cipher Cracking Using Discrete GANs

    This work details CipherGAN, an architecture inspired by CycleGAN used for inferring the underlying cipher mapping given banks of unpaired ciphertext and plaintext. We demonstrate that CipherGAN is capable of cracking language data enciphered using shift and Vigenere ciphers to a high degree of fidelity and for vocabularies much larger than previously achieved. We present how CycleGAN can be made compatible with discrete data and train in a stable way. We then prove that the technique used in CipherGAN avoids the common problem of uninformative discrimination associated with GANs applied to discrete data.

    01/15/2018 ∙ by Aidan N. Gomez, et al. ∙ 0 share

    read it

  • Tensor2Tensor for Neural Machine Translation

    Tensor2Tensor is a library for deep learning models that is well-suited for neural machine translation and includes the reference implementation of the state-of-the-art Transformer model.

    03/16/2018 ∙ by Ashish Vaswani, et al. ∙ 0 share

    read it