Unicoder-VL: A Universal Encoder for Vision and Language by Cross-modal Pre-training

08/16/2019
by   Gen Li, et al.
7

We propose Unicoder-VL, a universal encoder that aims to learn joint representations of vision and language in a pre-training manner. Borrow ideas from cross-lingual pre-trained models, such as XLM and Unicoder, both visual and linguistic contents are fed into a multi-layer transformer for the cross-modal pre-training, where three pre-trained tasks are employed, including masked language model, masked object label prediction and visual-linguistic matching. The first two tasks learn context-aware representations for input tokens based on linguistic and visual contents jointly. The last task tries to predict whether an image and a text describe each other. After pretraining on large amounts of image-caption pairs, we transfer Unicoder-VL to image-text retrieval tasks with just one additional output layer, and achieve state-of-the-art performances on both MSCOCO and Flicker30K.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset