Prediction intervals for neural network models using weighted asymmetric loss functions

10/09/2022
by   Milo Grillo, et al.
0

We develop a novel and simple method to produce prediction intervals (PIs) for fitting and forecasting exercises. It finds the lower and upper bound of the intervals by minimising a weighted asymmetric loss function, where the weight depends on the width of the interval. We give a short mathematical proof. As a corollary of our proof, we find PIs for values restricted to a parameterised function and argue why the method works for predicting PIs of dependent variables. The results of applying the method on a neural network deployed in a real-world forecasting task prove the validity of its practical implementation in complex machine learning setups.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro