Improving Adversarial Robustness Through Progressive Hardening

03/18/2020
by   Chawin Sitawarin, et al.
1

Adversarial training (AT) has become a popular choice for training robust networks. However, by virtue of its formulation, AT tends to sacrifice clean accuracy heavily in favor of robustness. Furthermore, AT with a large perturbation budget can cause models to get stuck at poor local minima and behave like a constant function, always predicting the same class. To address the above concerns we propose Adversarial Training with Early Stopping (ATES). The design of ATES is guided by principles from curriculum learning that emphasizes on starting "easy" and gradually ramping up on the "difficulty" of training. We do so by early stopping the adversarial example generation step in AT, progressively increasing difficulty of the samples the network trains on. This stabilizes network training even for large perturbation budgets and allows the network to operate at a better clean accuracy versus robustness trade-off curve compared to AT. Functionally, this leads to a significant improvement in both clean accuracy and robustness for ATES models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset