Fair Matrix Factorisation for Large-Scale Recommender Systems

09/09/2022
by   Riku Togashi, et al.
0

Modern recommender systems are hedged with various requirements, such as ranking quality, optimisation efficiency, and item fairness. It is challenging to reconcile these requirements at a practical level. In this study, we argue that item fairness is particularly hard to optimise in a large-scale setting. The notion of item fairness requires controlling the opportunity of items (e.g. exposure) by considering the entire ranked lists for users. It hence breaks the independence of optimisation subproblems for users and items, which is the essential property for conventional scalable algorithms, such as implicit alternating least squares (iALS). This paper explores a collaborative filtering method for fairness-aware item recommendation, achieving computational efficiency comparable to iALS, the most efficient method for item recommendation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset